File size: 15,523 Bytes
15f3912 914f0c8 15f3912 914f0c8 3bf61c2 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 3bf61c2 15f3912 1acc22b 15f3912 914f0c8 15f3912 3bf61c2 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 3bf61c2 914f0c8 3bf61c2 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 15f3912 914f0c8 3bf61c2 914f0c8 15f3912 3bf61c2 15f3912 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import gradio as gr
import os
import torch
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
api_token = os.getenv("HF_TOKEN")
# Available LLM models
list_llm = [
"meta-llama/Meta-Llama-3-8B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.2",
"deepseek-ai/deepseek-llm-7b-chat"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
def load_doc(list_file_path):
"""
Load and split PDF documents into chunks
"""
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024,
chunk_overlap=64
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
def create_db(splits):
"""
Create vector database from document splits
"""
embeddings = HuggingFaceEmbeddings()
vectordb = FAISS.from_documents(splits, embeddings)
return vectordb
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
"""
Initialize the language model chain
"""
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
task="text-generation"
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
def initialize_database(list_file_obj, progress=gr.Progress()):
"""
Initialize the document database
"""
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path)
vector_db = create_db(doc_splits)
return vector_db, "Database created successfully!"
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
"""
Initialize the Language Model
"""
llm_name = list_llm[llm_option]
print("Selected LLM model:", llm_name)
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "Analysis Assistant initialized and ready!"
def format_chat_history(message, chat_history):
"""
Format chat history for the model
"""
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
"""
Handle conversation and document analysis
"""
formatted_chat_history = format_chat_history(message, history)
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def demo():
"""
Main demo application
"""
# Enhanced theme with professional colors
theme = gr.themes.Default(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
font=[gr.themes.GoogleFont("Roboto"), "system-ui", "sans-serif"]
)
css = """
.container { max-width: 1200px; margin: auto; }
.metadata { font-size: 0.9em; color: #666; }
.highlight { background-color: #f0f7ff; padding: 1em; border-radius: 8px; }
.warning { color: #e53e3e; }
.success { color: #38a169; }
"""
with gr.Blocks(theme=theme, css=css) as demo:
vector_db = gr.State()
qa_chain = gr.State()
# Enhanced header
gr.HTML(
"""
<div style='text-align: center; padding: 20px;'>
<h1 style='color: #1a365d; margin-bottom: 10px;'>MetroAssist AI - Expert in Metrology Report Analysis</h1>
<p style='color: #4a5568; font-size: 1.2em;'>Your intelligent assistant for advanced analysis of metrological documents</p>
</div>
"""
)
# Marketing and feature description
gr.Markdown(
"""
### π Specialized Metrology Analysis
MetroAssist AI is a specialized assistant designed to revolutionize metrology report analysis.
Powered by cutting-edge AI technology, it offers:
* **Precise Analysis**: Detailed interpretation of measurements, calibrations, and compliance
* **Intelligent Contextualization**: Deep understanding of metrological standards and norms
* **Advanced Technical Support**: Assistance in complex instrument and measurement analyses
* **Rapid Processing**: Efficient analysis of multiple technical documents
β οΈ **Security Note**: Your documents are processed with complete security. We do not permanently store confidential data.
"""
)
with gr.Row():
with gr.Column(scale=86):
gr.Markdown(
"""
### π₯ Step 1: Document Loading and Preparation
Upload your metrology reports for expert analysis.
"""
)
with gr.Row():
document = gr.Files(
height=300,
file_count="multiple",
file_types=["pdf"],
interactive=True,
label="Upload Metrology Reports (PDF)",
info="Accepts multiple PDF files"
)
with gr.Row():
db_btn = gr.Button(
"Process Documents",
variant="primary",
size="lg"
)
with gr.Row():
db_progress = gr.Textbox(
value="Waiting for documents...",
show_label=False,
container=False
)
gr.Markdown(
"""
### π€ Analysis Engine Configuration
Select and configure the AI model to best meet your needs.
"""
)
with gr.Row():
llm_btn = gr.Radio(
list_llm_simple,
label="Available AI Models",
value=list_llm_simple[0],
type="index",
info="Choose the most suitable model for your analysis"
)
with gr.Row():
with gr.Accordion("Advanced Analysis Parameters", open=False):
with gr.Row():
slider_temperature = gr.Slider(
minimum=0.01,
maximum=1.0,
value=0.5,
step=0.1,
label="Analysis Precision",
info="Controls the balance between precision and creativity in analysis",
interactive=True
)
with gr.Row():
slider_maxtokens = gr.Slider(
minimum=128,
maximum=9192,
value=4096,
step=128,
label="Response Length",
info="Defines the level of detail in analyses",
interactive=True
)
with gr.Row():
slider_topk = gr.Slider(
minimum=1,
maximum=10,
value=3,
step=1,
label="Analysis Diversity",
info="Controls the variety of perspectives in analysis",
interactive=True
)
with gr.Row():
qachain_btn = gr.Button(
"Initialize Analysis Assistant",
variant="primary",
size="lg"
)
with gr.Row():
llm_progress = gr.Textbox(
value="Waiting for initialization...",
show_label=False
)
with gr.Column(scale=200):
gr.Markdown(
"""
### π¬ Step 2: Expert Consultation and Analysis
Ask questions about your metrology reports. The assistant will provide detailed technical analyses.
**Suggested questions:**
- Analyze the calibration results of this instrument
- Verify compliance with technical standards
- Identify critical points in measurements
- Compare results with specified limits
- Evaluate measurement uncertainty
- Assess calibration intervals
"""
)
chatbot = gr.Chatbot(
height=505,
show_label=True,
container=True,
label="Metrology Analysis"
)
with gr.Accordion("Source Document References", open=False):
with gr.Row():
doc_source1 = gr.Textbox(
label="Technical Reference 1",
lines=2,
container=True,
scale=20
)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(
label="Technical Reference 2",
lines=2,
container=True,
scale=20
)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(
label="Technical Reference 3",
lines=2,
container=True,
scale=20
)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(
placeholder="Enter your question about the metrology report...",
container=True,
label="Your Query"
)
with gr.Row():
submit_btn = gr.Button(
"Submit Query",
variant="primary"
)
clear_btn = gr.ClearButton(
[msg, chatbot],
value="Clear Conversation",
variant="secondary"
)
# Footer
gr.Markdown(
"""
---
### βΉοΈ About MetroAssist AI
Developed for metrology professionals, engineers, and technicians who need precise
and reliable analysis of technical documents. Our tool uses advanced AI technology
to provide valuable insights and support decision-making in metrology.
**Specialized Features:**
- Detailed analysis of calibration certificates
- Interpretation of complex metrological data
- Verification of compliance with technical standards
- Decision support in metrological processes
- Uncertainty analysis and measurement traceability
- Quality control and measurement system analysis
*Version 1.0 - Updated 2024*
"""
)
# Event handlers
db_btn.click(
initialize_database,
inputs=[document],
outputs=[vector_db, db_progress]
)
qachain_btn.click(
initialize_LLM,
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
outputs=[qa_chain, llm_progress]
).then(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
msg.submit(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
submit_btn.click(
conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
clear_btn.click(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo() |