File size: 15,523 Bytes
15f3912
 
914f0c8
15f3912
 
 
 
 
 
 
 
 
 
 
914f0c8
 
 
3bf61c2
 
 
 
 
15f3912
 
 
914f0c8
 
 
15f3912
 
 
 
 
914f0c8
 
 
15f3912
 
 
 
914f0c8
 
 
15f3912
 
 
 
 
914f0c8
 
 
3bf61c2
 
 
 
 
 
 
 
15f3912
 
 
 
 
 
 
1acc22b
15f3912
 
 
914f0c8
15f3912
 
 
 
 
3bf61c2
15f3912
914f0c8
 
 
15f3912
 
 
914f0c8
15f3912
 
914f0c8
 
 
15f3912
914f0c8
15f3912
914f0c8
15f3912
 
914f0c8
 
 
15f3912
 
 
 
 
 
 
914f0c8
 
 
15f3912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
914f0c8
 
 
 
3bf61c2
 
 
914f0c8
 
3bf61c2
 
914f0c8
 
 
 
 
 
 
 
 
15f3912
 
914f0c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15f3912
914f0c8
 
 
 
 
 
 
15f3912
914f0c8
 
 
 
 
 
 
 
15f3912
914f0c8
 
 
 
 
15f3912
914f0c8
 
 
 
 
 
 
 
 
 
 
 
15f3912
914f0c8
 
 
 
 
 
 
 
15f3912
914f0c8
15f3912
914f0c8
 
 
 
 
 
 
 
 
15f3912
914f0c8
 
 
 
 
 
 
 
 
15f3912
914f0c8
 
 
 
 
 
 
 
 
 
15f3912
914f0c8
 
 
 
 
15f3912
914f0c8
 
 
 
15f3912
914f0c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15f3912
914f0c8
 
 
 
 
 
15f3912
 
914f0c8
 
 
 
 
 
15f3912
 
914f0c8
 
 
 
 
 
15f3912
914f0c8
15f3912
914f0c8
 
 
 
 
15f3912
914f0c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15f3912
914f0c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bf61c2
914f0c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15f3912
3bf61c2
15f3912
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import gradio as gr
import os
import torch
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings 
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint

api_token = os.getenv("HF_TOKEN")

# Available LLM models
list_llm = [
    "meta-llama/Meta-Llama-3-8B-Instruct", 
    "mistralai/Mistral-7B-Instruct-v0.2",
    "deepseek-ai/deepseek-llm-7b-chat"
]  
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

def load_doc(list_file_path):
    """
    Load and split PDF documents into chunks
    """
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1024,
        chunk_overlap=64
    )
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

def create_db(splits):
    """
    Create vector database from document splits
    """
    embeddings = HuggingFaceEmbeddings()
    vectordb = FAISS.from_documents(splits, embeddings)
    return vectordb

def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    """
    Initialize the language model chain
    """
    llm = HuggingFaceEndpoint(
        repo_id=llm_model,
        huggingfacehub_api_token=api_token,
        temperature=temperature,
        max_new_tokens=max_tokens,
        top_k=top_k,
        task="text-generation"
    )
    
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )

    retriever = vector_db.as_retriever()
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff",
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    return qa_chain

def initialize_database(list_file_obj, progress=gr.Progress()):
    """
    Initialize the document database
    """
    list_file_path = [x.name for x in list_file_obj if x is not None]
    doc_splits = load_doc(list_file_path)
    vector_db = create_db(doc_splits)
    return vector_db, "Database created successfully!"

def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    """
    Initialize the Language Model
    """
    llm_name = list_llm[llm_option]
    print("Selected LLM model:", llm_name)
    qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
    return qa_chain, "Analysis Assistant initialized and ready!"

def format_chat_history(message, chat_history):
    """
    Format chat history for the model
    """
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history

def conversation(qa_chain, message, history):
    """
    Handle conversation and document analysis
    """
    formatted_chat_history = format_chat_history(message, history)
    response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    new_history = history + [(message, response_answer)]
    return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page

def demo():
    """
    Main demo application
    """
    # Enhanced theme with professional colors
    theme = gr.themes.Default(
        primary_hue="indigo",
        secondary_hue="blue",
        neutral_hue="slate",
        font=[gr.themes.GoogleFont("Roboto"), "system-ui", "sans-serif"]
    )
    
    css = """
        .container { max-width: 1200px; margin: auto; }
        .metadata { font-size: 0.9em; color: #666; }
        .highlight { background-color: #f0f7ff; padding: 1em; border-radius: 8px; }
        .warning { color: #e53e3e; }
        .success { color: #38a169; }
    """
    
    with gr.Blocks(theme=theme, css=css) as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        
        # Enhanced header
        gr.HTML(
            """
            <div style='text-align: center; padding: 20px;'>
                <h1 style='color: #1a365d; margin-bottom: 10px;'>MetroAssist AI - Expert in Metrology Report Analysis</h1>
                <p style='color: #4a5568; font-size: 1.2em;'>Your intelligent assistant for advanced analysis of metrological documents</p>
            </div>
            """
        )
        
        # Marketing and feature description
        gr.Markdown(
            """
            ### πŸ” Specialized Metrology Analysis
            
            MetroAssist AI is a specialized assistant designed to revolutionize metrology report analysis. 
            Powered by cutting-edge AI technology, it offers:

            * **Precise Analysis**: Detailed interpretation of measurements, calibrations, and compliance
            * **Intelligent Contextualization**: Deep understanding of metrological standards and norms
            * **Advanced Technical Support**: Assistance in complex instrument and measurement analyses
            * **Rapid Processing**: Efficient analysis of multiple technical documents
            
            ⚠️ **Security Note**: Your documents are processed with complete security. We do not permanently store confidential data.
            """
        )

        with gr.Row():
            with gr.Column(scale=86):
                gr.Markdown(
                    """
                    ### πŸ“₯ Step 1: Document Loading and Preparation
                    Upload your metrology reports for expert analysis.
                    """
                )
                with gr.Row():
                    document = gr.Files(
                        height=300,
                        file_count="multiple",
                        file_types=["pdf"],
                        interactive=True,
                        label="Upload Metrology Reports (PDF)",
                        info="Accepts multiple PDF files"
                    )
                with gr.Row():
                    db_btn = gr.Button(
                        "Process Documents",
                        variant="primary",
                        size="lg"
                    )
                with gr.Row():
                    db_progress = gr.Textbox(
                        value="Waiting for documents...",
                        show_label=False,
                        container=False
                    )
                
                gr.Markdown(
                    """
                    ### πŸ€– Analysis Engine Configuration
                    Select and configure the AI model to best meet your needs.
                    """
                )
                with gr.Row():
                    llm_btn = gr.Radio(
                        list_llm_simple,
                        label="Available AI Models",
                        value=list_llm_simple[0],
                        type="index",
                        info="Choose the most suitable model for your analysis"
                    )
                
                with gr.Row():
                    with gr.Accordion("Advanced Analysis Parameters", open=False):
                        with gr.Row():
                            slider_temperature = gr.Slider(
                                minimum=0.01,
                                maximum=1.0,
                                value=0.5,
                                step=0.1,
                                label="Analysis Precision",
                                info="Controls the balance between precision and creativity in analysis",
                                interactive=True
                            )
                        with gr.Row():
                            slider_maxtokens = gr.Slider(
                                minimum=128,
                                maximum=9192,
                                value=4096,
                                step=128,
                                label="Response Length",
                                info="Defines the level of detail in analyses",
                                interactive=True
                            )
                        with gr.Row():
                            slider_topk = gr.Slider(
                                minimum=1,
                                maximum=10,
                                value=3,
                                step=1,
                                label="Analysis Diversity",
                                info="Controls the variety of perspectives in analysis",
                                interactive=True
                            )
                
                with gr.Row():
                    qachain_btn = gr.Button(
                        "Initialize Analysis Assistant",
                        variant="primary",
                        size="lg"
                    )
                with gr.Row():
                    llm_progress = gr.Textbox(
                        value="Waiting for initialization...",
                        show_label=False
                    )

            with gr.Column(scale=200):
                gr.Markdown(
                    """
                    ### πŸ’¬ Step 2: Expert Consultation and Analysis
                    Ask questions about your metrology reports. The assistant will provide detailed technical analyses.
                    
                    **Suggested questions:**
                    - Analyze the calibration results of this instrument
                    - Verify compliance with technical standards
                    - Identify critical points in measurements
                    - Compare results with specified limits
                    - Evaluate measurement uncertainty
                    - Assess calibration intervals
                    """
                )
                chatbot = gr.Chatbot(
                    height=505,
                    show_label=True,
                    container=True,
                    label="Metrology Analysis"
                )
                
                with gr.Accordion("Source Document References", open=False):
                    with gr.Row():
                        doc_source1 = gr.Textbox(
                            label="Technical Reference 1",
                            lines=2,
                            container=True,
                            scale=20
                        )
                        source1_page = gr.Number(label="Page", scale=1)
                    with gr.Row():
                        doc_source2 = gr.Textbox(
                            label="Technical Reference 2",
                            lines=2,
                            container=True,
                            scale=20
                        )
                        source2_page = gr.Number(label="Page", scale=1)
                    with gr.Row():
                        doc_source3 = gr.Textbox(
                            label="Technical Reference 3",
                            lines=2,
                            container=True,
                            scale=20
                        )
                        source3_page = gr.Number(label="Page", scale=1)
                
                with gr.Row():
                    msg = gr.Textbox(
                        placeholder="Enter your question about the metrology report...",
                        container=True,
                        label="Your Query"
                    )
                with gr.Row():
                    submit_btn = gr.Button(
                        "Submit Query",
                        variant="primary"
                    )
                    clear_btn = gr.ClearButton(
                        [msg, chatbot],
                        value="Clear Conversation",
                        variant="secondary"
                    )

        # Footer
        gr.Markdown(
            """
            ---
            ### ℹ️ About MetroAssist AI
            
            Developed for metrology professionals, engineers, and technicians who need precise
            and reliable analysis of technical documents. Our tool uses advanced AI technology
            to provide valuable insights and support decision-making in metrology.
            
            **Specialized Features:**
            - Detailed analysis of calibration certificates
            - Interpretation of complex metrological data
            - Verification of compliance with technical standards
            - Decision support in metrological processes
            - Uncertainty analysis and measurement traceability
            - Quality control and measurement system analysis
            
            *Version 1.0 - Updated 2024*
            """
        )

        # Event handlers
        db_btn.click(
            initialize_database,
            inputs=[document],
            outputs=[vector_db, db_progress]
        )
        
        qachain_btn.click(
            initialize_LLM,
            inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
            outputs=[qa_chain, llm_progress]
        ).then(
            lambda: [None, "", 0, "", 0, "", 0],
            inputs=None,
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
            queue=False
        )

        msg.submit(
            conversation,
            inputs=[qa_chain, msg, chatbot],
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
            queue=False
        )
        
        submit_btn.click(
            conversation,
            inputs=[qa_chain, msg, chatbot],
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
            queue=False
        )
        
        clear_btn.click(
            lambda: [None, "", 0, "", 0, "", 0],
            inputs=None,
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
            queue=False
        )

    demo.queue().launch(debug=True)

if __name__ == "__main__":
    demo()