|
import gradio as gr |
|
import os |
|
import torch |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain_community.vectorstores import Chroma |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.llms import HuggingFacePipeline |
|
from langchain.chains import ConversationChain |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain_community.llms import HuggingFaceEndpoint |
|
|
|
api_token = os.getenv("HF_TOKEN") |
|
|
|
|
|
list_llm = [ |
|
"meta-llama/Meta-Llama-3-8B-Instruct", |
|
"mistralai/Mistral-7B-Instruct-v0.2", |
|
"deepseek-ai/deepseek-llm-7b-chat" |
|
] |
|
list_llm_simple = [os.path.basename(llm) for llm in list_llm] |
|
|
|
def load_doc(list_file_path): |
|
""" |
|
Load and split PDF documents into chunks |
|
""" |
|
loaders = [PyPDFLoader(x) for x in list_file_path] |
|
pages = [] |
|
for loader in loaders: |
|
pages.extend(loader.load()) |
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=1024, |
|
chunk_overlap=64 |
|
) |
|
doc_splits = text_splitter.split_documents(pages) |
|
return doc_splits |
|
|
|
def create_db(splits): |
|
""" |
|
Create vector database from document splits |
|
""" |
|
embeddings = HuggingFaceEmbeddings() |
|
vectordb = FAISS.from_documents(splits, embeddings) |
|
return vectordb |
|
|
|
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): |
|
""" |
|
Initialize the language model chain |
|
""" |
|
llm = HuggingFaceEndpoint( |
|
repo_id=llm_model, |
|
huggingfacehub_api_token=api_token, |
|
temperature=temperature, |
|
max_new_tokens=max_tokens, |
|
top_k=top_k, |
|
task="text-generation" |
|
) |
|
|
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key='answer', |
|
return_messages=True |
|
) |
|
|
|
retriever = vector_db.as_retriever() |
|
qa_chain = ConversationalRetrievalChain.from_llm( |
|
llm, |
|
retriever=retriever, |
|
chain_type="stuff", |
|
memory=memory, |
|
return_source_documents=True, |
|
verbose=False, |
|
) |
|
return qa_chain |
|
|
|
def initialize_database(list_file_obj, progress=gr.Progress()): |
|
""" |
|
Initialize the document database |
|
""" |
|
list_file_path = [x.name for x in list_file_obj if x is not None] |
|
doc_splits = load_doc(list_file_path) |
|
vector_db = create_db(doc_splits) |
|
return vector_db, "Database created successfully!" |
|
|
|
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): |
|
""" |
|
Initialize the Language Model |
|
""" |
|
llm_name = list_llm[llm_option] |
|
print("Selected LLM model:", llm_name) |
|
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) |
|
return qa_chain, "Analysis Assistant initialized and ready!" |
|
|
|
def format_chat_history(message, chat_history): |
|
""" |
|
Format chat history for the model |
|
""" |
|
formatted_chat_history = [] |
|
for user_message, bot_message in chat_history: |
|
formatted_chat_history.append(f"User: {user_message}") |
|
formatted_chat_history.append(f"Assistant: {bot_message}") |
|
return formatted_chat_history |
|
|
|
def conversation(qa_chain, message, history): |
|
""" |
|
Handle conversation and document analysis |
|
""" |
|
formatted_chat_history = format_chat_history(message, history) |
|
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history}) |
|
response_answer = response["answer"] |
|
if response_answer.find("Helpful Answer:") != -1: |
|
response_answer = response_answer.split("Helpful Answer:")[-1] |
|
response_sources = response["source_documents"] |
|
response_source1 = response_sources[0].page_content.strip() |
|
response_source2 = response_sources[1].page_content.strip() |
|
response_source3 = response_sources[2].page_content.strip() |
|
response_source1_page = response_sources[0].metadata["page"] + 1 |
|
response_source2_page = response_sources[1].metadata["page"] + 1 |
|
response_source3_page = response_sources[2].metadata["page"] + 1 |
|
new_history = history + [(message, response_answer)] |
|
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page |
|
|
|
def demo(): |
|
""" |
|
Main demo application |
|
""" |
|
|
|
theme = gr.themes.Default( |
|
primary_hue="indigo", |
|
secondary_hue="blue", |
|
neutral_hue="slate", |
|
font=[gr.themes.GoogleFont("Roboto"), "system-ui", "sans-serif"] |
|
) |
|
|
|
css = """ |
|
.container { max-width: 1200px; margin: auto; } |
|
.metadata { font-size: 0.9em; color: #666; } |
|
.highlight { background-color: #f0f7ff; padding: 1em; border-radius: 8px; } |
|
.warning { color: #e53e3e; } |
|
.success { color: #38a169; } |
|
""" |
|
|
|
with gr.Blocks(theme=theme, css=css) as demo: |
|
vector_db = gr.State() |
|
qa_chain = gr.State() |
|
|
|
|
|
gr.HTML( |
|
""" |
|
<div style='text-align: center; padding: 20px;'> |
|
<h1 style='color: #1a365d; margin-bottom: 10px;'>MetroAssist AI - Expert in Metrology Report Analysis</h1> |
|
<p style='color: #4a5568; font-size: 1.2em;'>Your intelligent assistant for advanced analysis of metrological documents</p> |
|
</div> |
|
""" |
|
) |
|
|
|
|
|
gr.Markdown( |
|
""" |
|
### 🔍 Specialized Metrology Analysis |
|
|
|
MetroAssist AI is a specialized assistant designed to revolutionize metrology report analysis. |
|
Powered by cutting-edge AI technology, it offers: |
|
|
|
* **Precise Analysis**: Detailed interpretation of measurements, calibrations, and compliance |
|
* **Intelligent Contextualization**: Deep understanding of metrological standards and norms |
|
* **Advanced Technical Support**: Assistance in complex instrument and measurement analyses |
|
* **Rapid Processing**: Efficient analysis of multiple technical documents |
|
|
|
⚠️ **Security Note**: Your documents are processed with complete security. We do not permanently store confidential data. |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=86): |
|
gr.Markdown( |
|
""" |
|
### 📥 Step 1: Document Loading and Preparation |
|
Upload your metrology reports for expert analysis. |
|
""" |
|
) |
|
with gr.Row(): |
|
document = gr.Files( |
|
height=300, |
|
file_count="multiple", |
|
file_types=["pdf"], |
|
interactive=True, |
|
label="Upload Metrology Reports (PDF)", |
|
info="Accepts multiple PDF files" |
|
) |
|
with gr.Row(): |
|
db_btn = gr.Button( |
|
"Process Documents", |
|
variant="primary", |
|
size="lg" |
|
) |
|
with gr.Row(): |
|
db_progress = gr.Textbox( |
|
value="Waiting for documents...", |
|
show_label=False, |
|
container=False |
|
) |
|
|
|
gr.Markdown( |
|
""" |
|
### 🤖 Analysis Engine Configuration |
|
Select and configure the AI model to best meet your needs. |
|
""" |
|
) |
|
with gr.Row(): |
|
llm_btn = gr.Radio( |
|
list_llm_simple, |
|
label="Available AI Models", |
|
value=list_llm_simple[0], |
|
type="index", |
|
info="Choose the most suitable model for your analysis" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("Advanced Analysis Parameters", open=False): |
|
with gr.Row(): |
|
slider_temperature = gr.Slider( |
|
minimum=0.01, |
|
maximum=1.0, |
|
value=0.5, |
|
step=0.1, |
|
label="Analysis Precision", |
|
info="Controls the balance between precision and creativity in analysis", |
|
interactive=True |
|
) |
|
with gr.Row(): |
|
slider_maxtokens = gr.Slider( |
|
minimum=128, |
|
maximum=9192, |
|
value=4096, |
|
step=128, |
|
label="Response Length", |
|
info="Defines the level of detail in analyses", |
|
interactive=True |
|
) |
|
with gr.Row(): |
|
slider_topk = gr.Slider( |
|
minimum=1, |
|
maximum=10, |
|
value=3, |
|
step=1, |
|
label="Analysis Diversity", |
|
info="Controls the variety of perspectives in analysis", |
|
interactive=True |
|
) |
|
|
|
with gr.Row(): |
|
qachain_btn = gr.Button( |
|
"Initialize Analysis Assistant", |
|
variant="primary", |
|
size="lg" |
|
) |
|
with gr.Row(): |
|
llm_progress = gr.Textbox( |
|
value="Waiting for initialization...", |
|
show_label=False |
|
) |
|
|
|
with gr.Column(scale=200): |
|
gr.Markdown( |
|
""" |
|
### 💬 Step 2: Expert Consultation and Analysis |
|
Ask questions about your metrology reports. The assistant will provide detailed technical analyses. |
|
|
|
**Suggested questions:** |
|
- Analyze the calibration results of this instrument |
|
- Verify compliance with technical standards |
|
- Identify critical points in measurements |
|
- Compare results with specified limits |
|
- Evaluate measurement uncertainty |
|
- Assess calibration intervals |
|
""" |
|
) |
|
chatbot = gr.Chatbot( |
|
height=505, |
|
show_label=True, |
|
container=True, |
|
label="Metrology Analysis" |
|
) |
|
|
|
with gr.Accordion("Source Document References", open=False): |
|
with gr.Row(): |
|
doc_source1 = gr.Textbox( |
|
label="Technical Reference 1", |
|
lines=2, |
|
container=True, |
|
scale=20 |
|
) |
|
source1_page = gr.Number(label="Page", scale=1) |
|
with gr.Row(): |
|
doc_source2 = gr.Textbox( |
|
label="Technical Reference 2", |
|
lines=2, |
|
container=True, |
|
scale=20 |
|
) |
|
source2_page = gr.Number(label="Page", scale=1) |
|
with gr.Row(): |
|
doc_source3 = gr.Textbox( |
|
label="Technical Reference 3", |
|
lines=2, |
|
container=True, |
|
scale=20 |
|
) |
|
source3_page = gr.Number(label="Page", scale=1) |
|
|
|
with gr.Row(): |
|
msg = gr.Textbox( |
|
placeholder="Enter your question about the metrology report...", |
|
container=True, |
|
label="Your Query" |
|
) |
|
with gr.Row(): |
|
submit_btn = gr.Button( |
|
"Submit Query", |
|
variant="primary" |
|
) |
|
clear_btn = gr.ClearButton( |
|
[msg, chatbot], |
|
value="Clear Conversation", |
|
variant="secondary" |
|
) |
|
|
|
|
|
gr.Markdown( |
|
""" |
|
--- |
|
### ℹ️ About MetroAssist AI |
|
|
|
Developed for metrology professionals, engineers, and technicians who need precise |
|
and reliable analysis of technical documents. Our tool uses advanced AI technology |
|
to provide valuable insights and support decision-making in metrology. |
|
|
|
**Specialized Features:** |
|
- Detailed analysis of calibration certificates |
|
- Interpretation of complex metrological data |
|
- Verification of compliance with technical standards |
|
- Decision support in metrological processes |
|
- Uncertainty analysis and measurement traceability |
|
- Quality control and measurement system analysis |
|
|
|
*Version 1.0 - Updated 2024* |
|
""" |
|
) |
|
|
|
|
|
db_btn.click( |
|
initialize_database, |
|
inputs=[document], |
|
outputs=[vector_db, db_progress] |
|
) |
|
|
|
qachain_btn.click( |
|
initialize_LLM, |
|
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], |
|
outputs=[qa_chain, llm_progress] |
|
).then( |
|
lambda: [None, "", 0, "", 0, "", 0], |
|
inputs=None, |
|
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], |
|
queue=False |
|
) |
|
|
|
msg.submit( |
|
conversation, |
|
inputs=[qa_chain, msg, chatbot], |
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], |
|
queue=False |
|
) |
|
|
|
submit_btn.click( |
|
conversation, |
|
inputs=[qa_chain, msg, chatbot], |
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], |
|
queue=False |
|
) |
|
|
|
clear_btn.click( |
|
lambda: [None, "", 0, "", 0, "", 0], |
|
inputs=None, |
|
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], |
|
queue=False |
|
) |
|
|
|
demo.queue().launch(debug=True) |
|
|
|
if __name__ == "__main__": |
|
demo() |