|
import torch.nn as nn |
|
|
|
from . import csn |
|
from . import r2plus1d |
|
|
|
|
|
def ir_csn_152(pretrained=True, **kwargs): |
|
model = csn.ir_csn_152(pretraining='ig65m_32frms' if pretrained else '', num_classes=359) |
|
model.avgpool = nn.Identity() |
|
model.fc = nn.Identity() |
|
return model |
|
|
|
|
|
def ir_csn_101(pretrained=True, **kwargs): |
|
model = ir_csn_152(pretrained=pretrained, **kwargs) |
|
model.layer2 = model.layer2[:4] |
|
model.layer3 = model.layer3[:23] |
|
return model |
|
|
|
|
|
def ir_csn_50(pretrained=True, **kwargs): |
|
model = ir_csn_152(pretrained=pretrained, **kwargs) |
|
model.layer2 = model.layer2[:4] |
|
model.layer3 = model.layer3[:6] |
|
return model |
|
|
|
|
|
def ip_csn_152(pretrained=True, **kwargs): |
|
model = csn.ip_csn_152(pretraining='ig65m_32frms' if pretrained else '', num_classes=359) |
|
model.avgpool = nn.Identity() |
|
model.fc = nn.Identity() |
|
return model |
|
|
|
|
|
def ip_csn_101(pretrained=True, **kwargs): |
|
model = ip_csn_152(pretrained=pretrained, **kwargs) |
|
model.layer2 = model.layer2[:4] |
|
model.layer3 = model.layer3[:23] |
|
return model |
|
|
|
|
|
def ip_csn_50(pretrained=True, **kwargs): |
|
model = ip_csn_152(pretrained=pretrained, **kwargs) |
|
model.layer2 = model.layer2[:4] |
|
model.layer3 = model.layer3[:6] |
|
return model |
|
|
|
|
|
def r2plus1d_34(pretrained=True, **kwargs): |
|
model = r2plus1d.r2plus1d_34(pretraining='32_ig65m' if pretrained else '', num_classes=359) |
|
model.avgpool = nn.Identity() |
|
model.fc = nn.Identity() |
|
return model |