metrology_rag / metrology_rag.py
DHEIVER's picture
Create metrology_rag.py
7453f77 verified
from gradio_client import Client
from langchain_community.document_loaders import PyPDFDirectoryLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from sentence_transformers import SentenceTransformer
from rank_bm25 import BM25Okapi
import faiss
import re
import os
import sys
import time
import json
import numpy as np
import logging
from typing import List, Dict, Tuple, Optional
from PyPDF2 import PdfReader
from colorama import Fore, Style
from datetime import datetime
from sklearn.metrics.pairwise import cosine_similarity
class MetrologyRAGSystem:
def __init__(self, config: Optional[Dict] = None):
self.config = self._load_default_config(config)
self.embedder = SentenceTransformer(self.config['embedding_model'])
self.client = Client(self.config['api_endpoint'])
self.documents = []
self.faiss_index = None
self.bm25 = None
self._init_logger()
def _load_default_config(self, config: Dict) -> Dict:
default_config = {
'embedding_model': 'all-MiniLM-L6-v2',
'chunk_size': 1600,
'chunk_overlap': 450,
'top_k': 7,
'max_retries': 5,
'hybrid_ratio': 0.6,
'allowed_file_types': ['.pdf'],
'api_endpoint': "yuntian-deng/ChatGPT",
'required_norms': ['ISO/IEC 17025', 'ABNT NBR ISO 9001'],
'min_confidence': 0.78,
'temperature': 0.3
}
return {**default_config, **(config or {})}
def _init_logger(self):
self.logger = logging.getLogger('MetrologyRAG')
self.logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('metrology_audit.log')
file_handler.setFormatter(formatter)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
self.logger.addHandler(file_handler)
self.logger.addHandler(stream_handler)
def initialize_system(self, pdf_folder: str):
try:
self._validate_data_source(pdf_folder)
start_time = time.time()
self._load_documents(pdf_folder)
self._create_vector_index()
self.logger.info(f"Sistema inicializado em {time.time()-start_time:.2f}s | Documentos: {len(self.documents)}")
except Exception as e:
self.logger.critical(f"Falha na inicialização: {str(e)}")
sys.exit(1)
def _validate_data_source(self, folder_path: str):
if not os.path.exists(folder_path):
raise FileNotFoundError(f"Diretório inexistente: {folder_path}")
valid_files = [f for f in os.listdir(folder_path)
if os.path.splitext(f)[1].lower() in self.config['allowed_file_types']]
if not valid_files:
raise ValueError("Nenhum documento PDF válido encontrado")
def _load_documents(self, folder_path: str):
try:
loader = PyPDFDirectoryLoader(folder_path)
pages = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=self.config['chunk_size'],
chunk_overlap=self.config['chunk_overlap'],
separators=["\n\n• ", "\n■ ", "(?<=\. )", "; ", "► ", "\\|"]
)
clean_docs = []
for i, page in enumerate(pages):
try:
text = self._preprocess_technical_text(page.page_content)
clean_docs.extend(text_splitter.split_text(text))
except Exception as e:
self.logger.error(f"Erro no documento {i+1}: {str(e)}")
continue
self.documents = clean_docs
self.logger.info(f"Documentos técnicos carregados: {len(self.documents)} segmentos")
except Exception as e:
self.logger.error(f"Falha no carregamento: {str(e)}")
raise
def _preprocess_technical_text(self, text: str) -> str:
replacements = [
(r'\b(um)\b', 'µm'),
(r'(?i)graus?\s*C', '°C'),
(r'(\d)([A-Za-z°µ])', r'\1 \2'),
(r'±\s*(\d)', r'±\1'),
(r'kN/m²', 'kPa'),
(r'(\d+)\s*-\s*(\d+)', r'\1 a \2'),
(r'\s+', ' '),
(r'\[.*?\]', '')
]
for pattern, replacement in replacements:
text = re.sub(pattern, replacement, text)
return text.strip()
def _create_vector_index(self):
try:
dense_vectors = self.embedder.encode(self.documents)
self.faiss_index = faiss.IndexHNSWFlat(dense_vectors.shape[1], 32)
self.faiss_index.add(dense_vectors.astype('float32'))
tokenized_docs = [self._technical_tokenizer(doc) for doc in self.documents]
self.bm25 = BM25Okapi(tokenized_docs)
self.logger.info("Índices vetoriais criados com sucesso")
except Exception as e:
self.logger.error(f"Erro na criação de índices: {str(e)}")
raise
def _technical_tokenizer(self, text: str) -> List[str]:
tokens = re.findall(
r'\b[\wµ°±]+(?:[/-]\d+)?\b|'
r'\d+\.\d+[eE]?[+-]?\d*|'
r'[A-Z]{2,}(?:\s+\d+[A-Z]*)?|'
r'[;:±≤≥]',
text
)
return [t.lower() for t in tokens if t]
def retrieve_context(self, query: str) -> List[str]:
try:
boosted_query = self._boost_query(query)
query_embedding = self.embedder.encode([boosted_query])
_, dense_ids = self.faiss_index.search(query_embedding.astype('float32'), 50)
tokenized_query = self._technical_tokenizer(boosted_query)
bm25_scores = self.bm25.get_scores(tokenized_query)
bm25_ids = np.argsort(bm25_scores)[::-1][:50]
combined_scores = self._reciprocal_rank_fusion(dense_ids[0], bm25_ids)
return [self.documents[i] for i in combined_scores[:self.config['top_k']]]
except Exception as e:
self.logger.error(f"Falha na recuperação: {str(e)}")
return []
def _boost_query(self, query: str) -> str:
terms = [
'incerteza de medição',
'calibração rastreável',
'certificado de calibração',
'padrão de referência',
'ISO/IEC 17025'
]
return f"{query} {' '.join(terms)}"
def _reciprocal_rank_fusion(self, dense_ids: List[int], bm25_ids: List[int]) -> List[int]:
combined_scores = {}
for i, idx in enumerate(dense_ids):
combined_scores[idx] = combined_scores.get(idx, 0) + 1/(i + 60)
for i, idx in enumerate(bm25_ids):
combined_scores[idx] = combined_scores.get(idx, 0) + 1/(i + 60)
sorted_scores = sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)
valid_ids = [idx for idx, _ in sorted_scores if idx < len(self.documents)]
return valid_ids
def generate_technical_response(self, query: str) -> str:
try:
context = self.retrieve_context(query)
if not context:
raise ValueError("Contexto insuficiente")
prompt = self._build_structured_prompt(query, context)
if not self._validate_prompt(prompt):
raise ValueError("Prompt inválido")
response = self._call_llm_with_retry(prompt)
return self._postprocess_response(response, context)
except Exception as e:
self.logger.error(f"Falha na geração: {str(e)}")
return self._fallback_procedure(query)
def _build_structured_prompt(self, query: str, context: List[str]) -> str:
detected_norms = self._detect_norms(context)
detected_equipment = self._detect_equipment(context)
context_entries = []
for i, text in enumerate(context[:3]):
cleaned_text = text[:250].replace('\n', ' ')
context_entries.append(f'[Doc {i+1}] {cleaned_text}...')
context_str = '\n'.join(context_entries)
template = (
f"## Diretrizes Técnicas ISO/IEC 17025:2017 ##\n"
f"1. Formato obrigatório:\n"
f" - Seção 1: Fundamentação Normativa ({', '.join(detected_norms)})\n"
f" - Seção 2: Procedimento de Medição\n"
f" - Seção 3: Análise de Incertezas (k=2)\n"
f" - Seção 4: Condições Ambientais\n\n"
f"2. Dados obrigatórios:\n"
f" - Tolerâncias: ± valores com unidades\n"
f" - Equipamentos: {', '.join(detected_equipment)}\n"
f" - Normas: {', '.join(detected_norms)}\n\n"
f"## Contexto Técnico ##\n"
f"{context_str}\n\n"
f"## Consulta ##\n"
f"{query}\n\n"
f"## Resposta Estruturada ##"
)
return template
def _detect_norms(self, context: List[str]) -> List[str]:
norms = set()
pattern = r'\b(ISO/IEC|ABNT NBR|OIML R)\s+[\d\.]+'
for text in context:
norms.update(re.findall(pattern, text))
return list(norms)[:3] or self.config['required_norms']
def _detect_equipment(self, context: List[str]) -> List[str]:
equipment = set()
pattern = r'\b([A-Z][a-z]*\s+)?(\d+[A-Z]+\b|Micrômetro|Paquímetro|Manômetro|Multímetro)'
for text in context:
matches = re.findall(pattern, text)
equipment.update([f"{m[0]}{m[1]}" for m in matches])
return list(equipment)[:5]
def _validate_prompt(self, prompt: str) -> bool:
checks = [
(r'ISO/IEC 17025', 2),
(r'\d+ ± \d+', 1),
(r'k=\d', 1),
(r'°C', 1)
]
score = sum(weight for pattern, weight in checks if re.search(pattern, prompt))
return score >= 3
def _call_llm_with_retry(self, prompt: str) -> str:
for attempt in range(self.config['max_retries']):
try:
result = self.client.predict(
inputs=prompt,
top_p=0.9,
temperature=self.config['temperature'],
chat_counter=0,
chatbot=[],
api_name="/predict"
)
return self._clean_api_response(result)
except Exception as e:
self.logger.warning(f"Tentativa {attempt+1} falhou: {str(e)}")
time.sleep(2**attempt)
raise TimeoutError("Falha após múltiplas tentativas")
def _clean_api_response(self, response) -> str:
if isinstance(response, (list, tuple)):
return ' '.join(str(item) for item in response if item)
return str(response).replace('**', '').replace('```', '').strip()
def _postprocess_response(self, response: str, context: List[str]) -> str:
processed = response.replace('Resposta Estruturada', '').strip()
processed = self._enhance_technical_terms(processed)
processed = self._add_references(processed, context)
return self._format_response(processed)
def _enhance_technical_terms(self, text: str) -> str:
replacements = {
r'\b(incerteza)\b': r'incerteza de medição',
r'\b(calibração)\b': r'calibração rastreável',
r'\b(norma)\b': r'norma técnica',
r'(\d)([a-zA-Zµ°])': r'\1 \2'
}
for pattern, repl in replacements.items():
text = re.sub(pattern, repl, text, flags=re.IGNORECASE)
return text
def _add_references(self, text: str, context: List[str]) -> str:
refs = set()
for doc in context[:3]:
match = re.search(r'\[Doc \d+\] (.{30})', doc)
if match:
refs.add(f"- {match.group(1)}...")
return f"{text}\n\n## Referências Técnicas ##\n" + "\n".join(list(refs)[:3])
def _format_response(self, text: str) -> str:
border = "="*80
header = f"{Fore.GREEN}▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓\n RESPOSTA TÉCNICA CERTIFICADA\n▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓{Style.RESET_ALL}"
formatted = re.sub(r'^(\d+\.)\s+(.+)$',
f'{Fore.CYAN}\\1 {Style.RESET_ALL}\\2',
text, flags=re.M)
formatted = re.sub(r'(± \d+\.?\d*)',
f'{Fore.YELLOW}\\1{Style.RESET_ALL}',
formatted)
return f"\n{border}\n{header}\n{border}\n{formatted}\n{border}"
def _fallback_procedure(self, query: str) -> str:
try:
key_terms = re.findall(r'\b[A-Z]{3,}\b|\b\d+[A-Z]+\b', query)
relevant = [doc for doc in self.documents if any(term in doc for term in key_terms)][:3]
return (
f"{Fore.YELLOW}INFORMAÇÃO TÉCNICA PARCIAL:{Style.RESET_ALL}\n" +
"\n".join([f"• {doc[:300]}..." for doc in relevant]) +
f"\n\n{Fore.RED}AVISO: Resposta não validada - consulte documentos originais{Style.RESET_ALL}"
)
except:
return f"{Fore.RED}Erro crítico - sistema necessita re-inicialização{Style.RESET_ALL}"
def generate_report(self, query: str, response: str, filename: str = "relatorio_tecnico.md"):
try:
timestamp = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
report = (
f"# RELATÓRIO TÉCNICO - METROLOGIA\n\n"
f"**Data:** {timestamp}\n"
f"**Consulta:** {query}\n\n"
"## Resposta Técnica\n"
f"{response}\n\n"
"**Assinatura Digital:** [Sistema Certificado v2.1]"
)
with open(filename, 'w', encoding='utf-8') as f:
f.write(report)
self.logger.info(f"Relatório gerado: {filename}")
except Exception as e:
self.logger.error(f"Falha ao gerar relatório: {str(e)}")
def analyze_metrology_report(self, pdf_path: str) -> str:
try:
text = self._extract_pdf_text(pdf_path)
compliance = self._check_compliance(text)
analysis = self._generate_analysis_report(text, compliance)
return self._format_compliance_report(analysis, compliance)
except Exception as e:
self.logger.error(f"Falha na análise: {str(e)}")
return self._fallback_procedure("Análise de relatório")
def _extract_pdf_text(self, path: str) -> str:
reader = PdfReader(path)
return '\n'.join([page.extract_text() for page in reader.pages if page.extract_text()])
def _check_compliance(self, text: str) -> Dict:
checks = {
'rastreabilidade': {'patterns': [r'rastreab[i|í]lidade.*INMETRO'], 'required': True},
'incerteza': {'patterns': [r'incerteza expandida.*≤?\s*\d+'], 'required': True},
'ambiente': {'patterns': [r'temperatura.*23\s*±\s*2\s*°C'], 'required': False},
'normas': {'patterns': [r'ISO/IEC\s+17025'], 'required': True}
}
results = {}
for key, config in checks.items():
found = any(re.search(p, text) for p in config['patterns'])
results[key] = {
'status': 'OK' if found else 'FALHA' if config['required'] else 'N/A',
'critical': config['required'] and not found
}
return results
def _generate_analysis_report(self, text: str, compliance: Dict) -> str:
critical = sum(1 for v in compliance.values() if v['critical'])
status = "NÃO CONFORME" if critical else "CONFORME"
prompt = f"""## Análise de Conformidade Metrológica ##
Documento analisado: {text[:2000]}...
Resultados:
{json.dumps(compliance, indent=2)}
## Parecer Técnico ##
Emitir parecer considerando:
- Status: {status}
- Itens críticos: {critical}
- Recomendações de adequação"""
return self._call_llm_with_retry(prompt)
def _format_compliance_report(self, text: str, compliance: Dict) -> str:
status = "APROVADO" if not any(v['critical'] for v in compliance.values()) else "REPROVADO"
color = Fore.GREEN if status == "APROVADO" else Fore.RED
header = f"""
{color}▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
PARECER TÉCNICO - STATUS: {status}
▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓{Style.RESET_ALL}
"""
summary = "## Resumo de Conformidade ##\n"
for k, v in compliance.items():
summary += f"• {k.upper()}: {v['status']}\n"
return header + summary + "\n" + text
def main_menu():
print(Fore.BLUE + "\n🔧 Sistema de Metrologia Inteligente v2.1" + Style.RESET_ALL)
print(Fore.CYAN + "Menu Principal:" + Style.RESET_ALL)
print("1. Inicializar sistema com documentos PDF")
print("2. Consulta técnica")
print("3. Analisar relatório PDF")
print("4. Gerar relatório completo")
print("5. Sair")
return input(Fore.YELLOW + "> Selecione uma opção: " + Style.RESET_ALL)