my-rag-space / app.py
DHEIVER's picture
Update app.py
e49e7e7 verified
raw
history blame
5.57 kB
import os
from typing import Optional
import gradio as gr
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
import tempfile
# Configurações
EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2"
LLM_MODEL = "mistralai/Mistral-7B-v0.1"
class RAGSystem:
def __init__(self):
# Inicializa o modelo de linguagem
self.tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL)
self.model = AutoModelForCausalLM.from_pretrained(
LLM_MODEL,
torch_dtype=torch.float16,
device_map="auto",
load_in_8bit=True # Usa quantização 8-bit para reduzir uso de memória
)
# Configura o pipeline
pipe = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
max_length=2048,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.15
)
# Configura o modelo LangChain
self.llm = HuggingFacePipeline(pipeline=pipe)
# Configura embeddings
self.embeddings = HuggingFaceEmbeddings(
model_name=EMBEDDING_MODEL,
model_kwargs={'device': 'cpu'}
)
def process_pdf(self, file_content: bytes) -> Optional[FAISS]:
"""Processa o PDF e cria a base de conhecimento"""
try:
# Cria arquivo temporário
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
tmp_file.write(file_content)
tmp_path = tmp_file.name
# Carrega e processa o PDF
loader = PyPDFLoader(tmp_path)
documents = loader.load()
# Remove arquivo temporário
os.unlink(tmp_path)
if not documents:
return None
# Divide o texto em chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
separators=["\n\n", "\n", ".", " ", ""]
)
texts = text_splitter.split_documents(documents)
# Cria base de conhecimento
db = FAISS.from_documents(texts, self.embeddings)
return db
except Exception as e:
print(f"Erro ao processar PDF: {str(e)}")
return None
def generate_response(self, file_obj, query: str) -> str:
"""Gera resposta para a consulta"""
if file_obj is None:
return "Por favor, faça upload de um arquivo PDF."
if not query.strip():
return "Por favor, insira uma pergunta."
try:
# Processa o PDF
db = self.process_pdf(file_obj)
if db is None:
return "Não foi possível processar o PDF."
# Configura o chain RAG
qa_chain = RetrievalQA.from_chain_type(
llm=self.llm,
chain_type="stuff",
retriever=db.as_retriever(
search_kwargs={
"k": 3,
"fetch_k": 5
}
),
return_source_documents=True
)
# Gera resposta
result = qa_chain({"query": query})
return result["result"]
except Exception as e:
return f"Erro ao gerar resposta: {str(e)}"
# Interface Gradio
def create_demo():
rag = RAGSystem()
with gr.Blocks() as demo:
gr.Markdown("# 📚 Sistema RAG com Mistral-7B")
gr.Markdown("""
### Instruções:
1. Faça upload de um arquivo PDF
2. Digite sua pergunta sobre o conteúdo
3. Aguarde a resposta gerada pelo modelo
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload do PDF",
type="binary",
file_types=[".pdf"]
)
query_input = gr.Textbox(
label="Sua Pergunta",
placeholder="Digite sua pergunta sobre o documento...",
lines=3
)
submit_btn = gr.Button("🔍 Pesquisar", variant="primary")
with gr.Column(scale=1):
output = gr.Textbox(
label="Resposta",
lines=10
)
submit_btn.click(
fn=rag.generate_response,
inputs=[file_input, query_input],
outputs=output
)
gr.Examples(
examples=[
[None, "Qual é o tema principal deste documento?"],
[None, "Pode fazer um resumo dos pontos principais?"],
[None, "Quais são as principais conclusões?"]
],
inputs=[file_input, query_input]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch()