Spaces:
Runtime error
Runtime error
File size: 9,543 Bytes
3ec9224 5be8df6 5db4902 5be8df6 5db4902 5be8df6 a0d7f95 80f4c28 a0d7f95 1ef8d7c aa98840 9bf736d 5be8df6 099bb87 336c110 099bb87 a0d7f95 b1ec9ac 5be8df6 099bb87 5be8df6 099bb87 80f4c28 099bb87 5be8df6 a0d7f95 099bb87 5be8df6 099bb87 5be8df6 099bb87 5be8df6 a0d7f95 099bb87 ca17588 00bd139 5be8df6 a0d7f95 9bf736d 099bb87 9bf736d 099bb87 9bf736d ca17588 9bf736d 099bb87 ca17588 099bb87 5be8df6 00bd139 099bb87 5be8df6 099bb87 00bd139 099bb87 5be8df6 099bb87 9733941 099bb87 80f4c28 099bb87 80f4c28 099bb87 80f4c28 5be8df6 2230109 099bb87 2230109 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import gradio as gr
import os
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from pathlib import Path
import chromadb
from unidecode import unidecode
import re
# Lista de modelos LLM disponíveis
list_llm = [
"mistralai/Mistral-7B-Instruct-v0.2",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.1",
"google/gemma-7b-it",
"google/gemma-2b-it",
"HuggingFaceH4/zephyr-7b-beta",
"HuggingFaceH4/zephyr-7b-gemma-v0.1",
"meta-llama/Llama-2-7b-chat-hf",
"microsoft/phi-2",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"mosaicml/mpt-7b-instruct",
"tiiuae/falcon-7b-instruct",
"google/flan-t5-xxl"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Função para carregar documentos PDF e dividir em chunks
def load_doc(list_file_path, chunk_size, chunk_overlap):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Função para criar o banco de dados vetorial
def create_db(splits, collection_name):
embedding = HuggingFaceEmbeddings()
new_client = chromadb.PersistentClient(path="./chroma_db")
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=new_client,
collection_name=collection_name,
)
return vectordb
# Função para inicializar a cadeia de QA com o modelo LLM
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
progress(0.1, desc="Inicializando tokenizer da HF...")
progress(0.5, desc="Inicializando Hub da HF...")
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
load_in_8bit=True,
)
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1", "mosaicml/mpt-7b-instruct"]:
raise gr.Error("O modelo LLM é muito grande para ser carregado automaticamente no endpoint de inferência gratuito")
elif llm_model == "microsoft/phi-2":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
trust_remote_code=True,
torch_dtype="auto",
)
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=250,
top_k=top_k,
)
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
raise gr.Error("O modelo Llama-2-7b-chat-hf requer uma assinatura Pro...")
else:
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
progress(0.75, desc="Definindo memória de buffer...")
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
progress(0.8, desc="Definindo cadeia de recuperação...")
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
progress(0.9, desc="Concluído!")
return qa_chain
# Função para gerar um nome de coleção válido
def create_collection_name(filepath):
collection_name = Path(filepath).stem
collection_name = collection_name.replace(" ", "-")
collection_name = unidecode(collection_name)
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
collection_name = collection_name[:50]
if len(collection_name) < 3:
collection_name = collection_name + 'xyz'
if not collection_name[0].isalnum():
collection_name = 'A' + collection_name[1:]
if not collection_name[-1].isalnum():
collection_name = collection_name[:-1] + 'Z'
return collection_name
# Função para inicializar o banco de dados
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
progress(0.1, desc="Criando nome da coleção...")
collection_name = create_collection_name(list_file_path[0])
progress(0.25, desc="Carregando documento...")
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
progress(0.5, desc="Gerando banco de dados vetorial...")
vector_db = create_db(doc_splits, collection_name)
progress(0.9, desc="Concluído!")
return vector_db, collection_name, "Completo!"
# Função para inicializar o modelo LLM
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
llm_name = list_llm[llm_option]
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
return qa_chain, "Completo!"
# Função para formatar o histórico de conversa
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"Usuário: {user_message}")
formatted_chat_history.append(f"Assistente: {bot_message}")
return formatted_chat_history
# Função para realizar a conversa com o chatbot
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if response_answer.find("Resposta útil:") != -1:
response_answer = response_answer.split("Resposta útil:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
# Função para carregar arquivos
def upload_file(file_obj):
list_file_path = []
for idx, file in enumerate(file_obj):
file_path = file_obj.name
list_file_path.append(file_path)
return list_file_path
def demo():
with gr.Blocks() as demo:
vector_db = gr.State()
qa_chain = gr.State()
collection_name = gr.State()
gr.Markdown(
"""<center><h2>Chatbot baseado em PDF</center></h2>
<h3>Faça qualquer pergunta sobre seus documentos PDF</h3>""")
gr.Markdown(
"""<b>Nota:</b> Este assistente de IA, utilizando Langchain e LLMs de código aberto, realiza geração aumentada por recuperação, usando as informações dos documentos PDF carregados.""")
with gr.Tab("Iniciar Chatbot"):
with gr.Column():
gr.Markdown("Por favor, faça upload de um ou mais arquivos PDF.")
file_upload = gr.File(label="Carregar PDFs", file_count="multiple", file_types=["pdf"])
chunk_size = gr.Slider(minimum=500, maximum=1500, step=100, label="Tamanho do Chunk", value=1000)
chunk_overlap = gr.Slider(minimum=0, maximum=500, step=10, label="Sobreposição do Chunk", value=100)
gr.Markdown("<center><h3>Escolha o modelo LLM desejado:</h3></center>")
llm_option = gr.Dropdown(choices=list_llm_simple, value=list_llm_simple[0])
gr.Markdown(
"""<center><h3>Escolha os parâmetros do LLM desejados:</h3></center>""")
llm_temperature = gr.Slider(minimum=0, maximum=1, step=0.01, label="Temperatura", value=0.7)
max_tokens = gr.Slider(minimum=100, maximum=500, step=10, label="Tokens Máximos", value=150)
top_k = gr.Slider(minimum=10, maximum=50, step=5, label="Top-K", value=40)
progress = gr.Progress()
progress.clear()
progress_progress = gr.Progress()
submit_button = gr.Button("Iniciar Chatbot")
submit_button.click(initialize_database, inputs=[file_upload, chunk_size, chunk_overlap], outputs=[vector_db, collection_name, progress])
submit_button.click(initialize_LLM, inputs=[llm_option, llm_temperature, max_tokens, top_k, vector_db], outputs=[qa_chain, progress])
return demo
demo().launch()
|