Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -107,11 +107,13 @@ def demo():
|
|
107 |
chunk_size = gr.Slider(100, 1000, value=500, label="Tamanho dos Chunks")
|
108 |
chunk_overlap = gr.Slider(0, 200, value=50, label="Sobreposição")
|
109 |
process_btn = gr.Button("Processar PDFs")
|
|
|
110 |
|
111 |
with gr.Tab("🧠 Modelo"):
|
112 |
model_selector = gr.Dropdown(list_llm_simple, label="Selecione o Modelo", value=list_llm_simple[0])
|
113 |
temperature = gr.Slider(0, 1, value=0.7, label="Criatividade")
|
114 |
load_model_btn = gr.Button("Carregar Modelo")
|
|
|
115 |
|
116 |
with gr.Tab("💬 Chat"):
|
117 |
chatbot = gr.Chatbot(height=400)
|
@@ -120,25 +122,28 @@ def demo():
|
|
120 |
|
121 |
# Eventos
|
122 |
process_btn.click(
|
123 |
-
lambda files, cs, co: create_db(load_doc([f.name for f in files], cs, co), "docs"),
|
124 |
inputs=[pdf_input, chunk_size, chunk_overlap],
|
125 |
-
outputs=vector_db
|
126 |
)
|
127 |
|
128 |
load_model_btn.click(
|
129 |
-
lambda model, temp: initialize_llmchain(list_llm[list_llm_simple.index(model)], temp, 512, 3, vector_db.value),
|
130 |
inputs=[model_selector, temperature],
|
131 |
-
outputs=qa_chain
|
132 |
)
|
133 |
|
134 |
def respond(message, chat_history):
|
|
|
|
|
135 |
result = qa_chain.value({"question": message, "chat_history": chat_history})
|
136 |
response = result["answer"]
|
137 |
sources = "\n".join([f"📄 Página {doc.metadata['page']+1}: {doc.page_content[:50]}..."
|
138 |
for doc in result["source_documents"][:2]])
|
139 |
-
|
|
|
140 |
|
141 |
-
msg.submit(respond, [msg, chatbot], chatbot)
|
142 |
|
143 |
demo.launch()
|
144 |
|
|
|
107 |
chunk_size = gr.Slider(100, 1000, value=500, label="Tamanho dos Chunks")
|
108 |
chunk_overlap = gr.Slider(0, 200, value=50, label="Sobreposição")
|
109 |
process_btn = gr.Button("Processar PDFs")
|
110 |
+
process_status = gr.Textbox(label="Status do Processamento", interactive=False)
|
111 |
|
112 |
with gr.Tab("🧠 Modelo"):
|
113 |
model_selector = gr.Dropdown(list_llm_simple, label="Selecione o Modelo", value=list_llm_simple[0])
|
114 |
temperature = gr.Slider(0, 1, value=0.7, label="Criatividade")
|
115 |
load_model_btn = gr.Button("Carregar Modelo")
|
116 |
+
model_status = gr.Textbox(label="Status do Modelo", interactive=False)
|
117 |
|
118 |
with gr.Tab("💬 Chat"):
|
119 |
chatbot = gr.Chatbot(height=400)
|
|
|
122 |
|
123 |
# Eventos
|
124 |
process_btn.click(
|
125 |
+
lambda files, cs, co: (create_db(load_doc([f.name for f in files], cs, co), "docs"), "Documentos processados!"),
|
126 |
inputs=[pdf_input, chunk_size, chunk_overlap],
|
127 |
+
outputs=[vector_db, process_status]
|
128 |
)
|
129 |
|
130 |
load_model_btn.click(
|
131 |
+
lambda model, temp: (initialize_llmchain(list_llm[list_llm_simple.index(model)], temp, 512, 3, vector_db.value), "Modelo carregado!"),
|
132 |
inputs=[model_selector, temperature],
|
133 |
+
outputs=[qa_chain, model_status]
|
134 |
)
|
135 |
|
136 |
def respond(message, chat_history):
|
137 |
+
if qa_chain.value is None:
|
138 |
+
return "Por favor, carregue um modelo primeiro.", chat_history
|
139 |
result = qa_chain.value({"question": message, "chat_history": chat_history})
|
140 |
response = result["answer"]
|
141 |
sources = "\n".join([f"📄 Página {doc.metadata['page']+1}: {doc.page_content[:50]}..."
|
142 |
for doc in result["source_documents"][:2]])
|
143 |
+
chat_history.append((message, f"{response}\n\n🔍 Fontes:\n{sources}"))
|
144 |
+
return "", chat_history
|
145 |
|
146 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
147 |
|
148 |
demo.launch()
|
149 |
|