Spaces:
Sleeping
Sleeping
File size: 9,983 Bytes
c0e8dca ad14e8e c0e8dca 0c33dd3 ad14e8e c0e8dca 5928b3c 0c33dd3 ad14e8e 414f828 ad14e8e 64dc005 87a6add 0663960 6ded37f ad14e8e c0e8dca 0c33dd3 c0e8dca 0c33dd3 c0e8dca ad14e8e c0e8dca 0c33dd3 ad14e8e c0e8dca 0c33dd3 ad14e8e c0e8dca 0c33dd3 ad14e8e c0e8dca ad14e8e c0e8dca ad14e8e c0e8dca ad14e8e c0e8dca ad14e8e c0e8dca ad14e8e 0c33dd3 ad14e8e c0e8dca ad14e8e c0e8dca ad14e8e c0e8dca ad14e8e c0e8dca ad14e8e c0e8dca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# app.py
import os
import time
import datetime as dt
import pandas as pd
import gradio as gr
from transformers import pipeline
import numpy as np
import librosa # pip install librosa
from jiwer import wer # pip install jiwer
LOG_PATH = "feedback_logs.csv"
# --- EDIT THIS: map display names to your HF Hub model IDs ---
language_models = {
"Akan (Asante Twi)": "FarmerlineML/w2v-bert-2.0_twi_alpha_v1",
"Ewe": "FarmerlineML/w2v-bert-2.0_ewe_2",
"Kiswahili": "FarmerlineML/w2v-bert-2.0_swahili_alpha",
"Luganda": "FarmerlineML/w2v-bert-2.0_luganda",
"Brazilian Portuguese": "FarmerlineML/w2v-bert-2.0_brazilian_portugese_alpha",
"Fante": "misterkissi/w2v2-lg-xls-r-300m-fante",
"Bemba": "DarliAI/kissi-w2v2-lg-xls-r-300m-bemba",
"Bambara": "DarliAI/kissi-w2v2-lg-xls-r-300m-bambara",
"Dagaare": "DarliAI/kissi-w2v2-lg-xls-r-300m-dagaare",
"Kinyarwanda": "DarliAI/kissi-w2v2-lg-xls-r-300m-kinyarwanda",
"Fula": "DarliAI/kissi-wav2vec2-fula-fleurs-full",
"Oromo": "DarliAI/kissi-w2v-bert-2.0-oromo",
"Runynakore": "misterkissi/w2v2-lg-xls-r-300m-runyankore",
"Ga": "misterkissi/w2v2-lg-xls-r-300m-ga",
"Vai": "misterkissi/whisper-small-vai",
"Kasem": "misterkissi/w2v2-lg-xls-r-300m-kasem",
"Lingala": "misterkissi/w2v2-lg-xls-r-300m-lingala",
"Fongbe": "misterkissi/whisper-small-fongbe",
"Amharic": "misterkissi/w2v2-lg-xls-r-1b-amharic",
"Xhosa": "misterkissi/w2v2-lg-xls-r-300m-xhosa",
"Tsonga": "misterkissi/w2v2-lg-xls-r-300m-tsonga",
"Yoruba": "FarmerlineML/w2v-bert-2.0_yoruba_v1",
"Luganda (FKD)": "FarmerlineML/luganda_fkd",
"Luo": "FarmerlineML/w2v-bert-2.0_luo_v2",
"Somali": "FarmerlineML/w2v-bert-2.0_somali_alpha",
"Pidgin": "FarmerlineML/pidgin_nigerian",
"Kikuyu": "FarmerlineML/w2v-bert-2.0_kikuyu",
"Igbo": "FarmerlineML/w2v-bert-2.0_igbo_v1",
"Krio": "FarmerlineML/w2v-bert-2.0_krio_v3"
}
# Pre-load pipelines for each language on CPU (device=-1)
asr_pipelines = {
lang: pipeline(
task="automatic-speech-recognition",
model=model_id,
device=-1, # force CPU usage
chunk_length_s=30
)
for lang, model_id in language_models.items()
}
def transcribe(audio_path: str, language: str):
"""
Load the audio via librosa (supports mp3, wav, flac, m4a, ogg, etc.),
convert to mono, then run it through the chosen ASR pipeline.
Returns (transcript, runtime_seconds, duration_seconds).
"""
if not audio_path:
return "β οΈ Please upload or record an audio clip.", 0.0, 0.0
# librosa.load returns a 1D np.ndarray (mono) and the sample rate
speech, sr = librosa.load(audio_path, sr=None, mono=True)
duration_s = librosa.get_duration(y=speech, sr=sr)
t0 = time.time()
result = asr_pipelines[language]({
"sampling_rate": sr,
"raw": speech
})
runtime_s = time.time() - t0
text = result.get("text", "")
return text, round(runtime_s, 3), round(duration_s, 3)
def compute_wer(pred: str, ref: str) -> float:
if not ref or not pred:
return None
try:
return float(wer(ref, pred))
except Exception:
return None
def ensure_logfile():
if not os.path.exists(LOG_PATH):
pd.DataFrame(columns=[
"timestamp", "language", "model_id", "audio_filename",
"duration_s", "runtime_s", "transcript", "reference",
"wer", "score_10", "feedback",
"domain", "environment", "accent_locale"
]).to_csv(LOG_PATH, index=False)
def save_feedback(language: str,
transcript: str,
reference: str,
score_10: int,
feedback: str,
audio_file: str,
duration_s: float,
runtime_s: float,
domain: str,
environment: str,
accent_locale: str):
ensure_logfile()
model_id = language_models.get(language, "")
audio_filename = os.path.basename(audio_file) if audio_file else ""
w = compute_wer(transcript, reference)
row = {
"timestamp": dt.datetime.utcnow().isoformat(),
"language": language,
"model_id": model_id,
"audio_filename": audio_filename,
"duration_s": duration_s,
"runtime_s": runtime_s,
"transcript": transcript,
"reference": reference,
"wer": w,
"score_10": score_10,
"feedback": feedback,
"domain": domain,
"environment": environment,
"accent_locale": accent_locale
}
try:
df = pd.read_csv(LOG_PATH)
df = pd.concat([df, pd.DataFrame([row])], ignore_index=True)
df.to_csv(LOG_PATH, index=False)
msg = "β
Feedback saved."
if w is not None:
msg += f" WER: {w:.3f}"
return msg
except Exception as e:
return f"β Could not save feedback: {e}"
def load_metrics():
ensure_logfile()
df = pd.read_csv(LOG_PATH)
if df.empty:
return "No feedback yet.", None, None, df
# Aggregates
# Per-language means:
per_lang = df.groupby("language").agg(
n=("wer", "count"),
mean_WER=("wer", "mean"),
mean_score=("score_10", "mean"),
mean_runtime_s=("runtime_s", "mean"),
mean_duration_s=("duration_s", "mean")
).reset_index().sort_values(by="mean_WER", ascending=True)
# Per-domain (optional):
per_domain = df.groupby("domain").agg(
n=("wer", "count"),
mean_WER=("wer", "mean"),
mean_score=("score_10", "mean")
).reset_index().sort_values(by="mean_WER", ascending=True)
return "π Metrics updated.", per_lang, per_domain, df
with gr.Blocks(title="π Multilingual ASR Demo", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
## ποΈ Multilingual Speech-to-Text + Feedback & Benchmarking
Upload an audio file (MP3, WAV, FLAC, M4A, OGG,β¦) or record via your microphone.
Choose the language/model and hit **Transcribe**.
Optionally provide a **reference transcript** to compute WER, then leave a score & feedback.
"""
)
with gr.Tabs():
with gr.Tab("ASR"):
with gr.Row():
lang = gr.Dropdown(
choices=list(language_models.keys()),
value=list(language_models.keys())[0],
label="Select Language / Model"
)
with gr.Row():
audio = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Upload or Record Audio"
)
btn = gr.Button("Transcribe", variant="primary")
output = gr.Textbox(label="Transcription", lines=6)
runtime = gr.Number(label="Model runtime (s)", precision=3, interactive=False)
duration = gr.Number(label="Audio duration (s)", precision=3, interactive=False)
# Feedback / Benchmark block
gr.Markdown("### π Feedback & WER (optional)")
with gr.Row():
reference = gr.Textbox(label="Reference transcript (optional, for WER)", lines=4, placeholder="Paste the ground-truth text here to compute WER")
with gr.Row():
score = gr.Slider(0, 10, step=1, value=8, label="Overall quality score (0β10)")
with gr.Row():
domain = gr.Dropdown(
["General", "Conversational", "News", "Agriculture", "Healthcare", "Education", "Customer support", "Finance", "Legal", "Entertainment", "Other"],
value="General",
label="Domain/topic"
)
environment = gr.Dropdown(
["Quiet", "Office", "Outdoor", "Vehicle", "Crowd/Market", "Radio/Phone", "Other"],
value="Quiet",
label="Recording environment"
)
accent_locale = gr.Textbox(label="Accent / Locale (e.g., Accra, Nairobi, Lagos)", placeholder="Optional")
feedback = gr.Textbox(label="Free-text feedback", lines=4, placeholder="What worked well? What failed? Any specific words or sounds?")
save_btn = gr.Button("Save Feedback", variant="secondary")
save_msg = gr.Markdown("")
# Wire up
btn.click(
fn=transcribe,
inputs=[audio, lang],
outputs=[output, runtime, duration]
)
save_btn.click(
fn=save_feedback,
inputs=[lang, output, reference, score, feedback, audio, duration, runtime, domain, environment, accent_locale],
outputs=save_msg
)
with gr.Tab("Metrics"):
refresh = gr.Button("Refresh metrics", variant="primary")
metrics_msg = gr.Markdown()
per_lang_df = gr.Dataframe(interactive=False, label="Per-language summary (lower WER is better)")
per_domain_df = gr.Dataframe(interactive=False, label="Per-domain summary")
logs_df = gr.Dataframe(interactive=False, label="Raw feedback log")
refresh.click(
fn=load_metrics,
inputs=[],
outputs=[metrics_msg, per_lang_df, per_domain_df, logs_df]
)
if __name__ == "__main__":
demo.launch()
|