File size: 9,983 Bytes
c0e8dca
 
ad14e8e
 
 
 
c0e8dca
 
 
0c33dd3
ad14e8e
 
 
c0e8dca
 
 
5928b3c
0c33dd3
 
 
 
ad14e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414f828
ad14e8e
64dc005
87a6add
0663960
6ded37f
ad14e8e
 
c0e8dca
 
0c33dd3
c0e8dca
 
 
 
0c33dd3
 
c0e8dca
 
 
 
ad14e8e
c0e8dca
0c33dd3
 
ad14e8e
c0e8dca
0c33dd3
ad14e8e
c0e8dca
0c33dd3
 
ad14e8e
c0e8dca
ad14e8e
c0e8dca
 
 
 
ad14e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e8dca
ad14e8e
 
 
 
 
 
 
 
 
c0e8dca
ad14e8e
 
 
 
 
 
 
 
 
 
c0e8dca
 
ad14e8e
0c33dd3
ad14e8e
 
c0e8dca
 
 
ad14e8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e8dca
ad14e8e
 
 
 
 
c0e8dca
ad14e8e
 
 
 
 
 
c0e8dca
ad14e8e
 
 
 
 
c0e8dca
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# app.py

import os
import time
import datetime as dt
import pandas as pd
import gradio as gr
from transformers import pipeline
import numpy as np
import librosa  # pip install librosa
from jiwer import wer  # pip install jiwer

LOG_PATH = "feedback_logs.csv"

# --- EDIT THIS: map display names to your HF Hub model IDs ---
language_models = {
    "Akan (Asante Twi)":        "FarmerlineML/w2v-bert-2.0_twi_alpha_v1",
    "Ewe":                      "FarmerlineML/w2v-bert-2.0_ewe_2",
    "Kiswahili":                "FarmerlineML/w2v-bert-2.0_swahili_alpha",
    "Luganda":                  "FarmerlineML/w2v-bert-2.0_luganda",
    "Brazilian Portuguese":     "FarmerlineML/w2v-bert-2.0_brazilian_portugese_alpha",
    "Fante":                    "misterkissi/w2v2-lg-xls-r-300m-fante", 
    "Bemba":                    "DarliAI/kissi-w2v2-lg-xls-r-300m-bemba",
    "Bambara":                  "DarliAI/kissi-w2v2-lg-xls-r-300m-bambara",
    "Dagaare":                  "DarliAI/kissi-w2v2-lg-xls-r-300m-dagaare",
    "Kinyarwanda":              "DarliAI/kissi-w2v2-lg-xls-r-300m-kinyarwanda",
    "Fula":                     "DarliAI/kissi-wav2vec2-fula-fleurs-full",
    "Oromo":                    "DarliAI/kissi-w2v-bert-2.0-oromo",
    "Runynakore":               "misterkissi/w2v2-lg-xls-r-300m-runyankore",
    "Ga":                       "misterkissi/w2v2-lg-xls-r-300m-ga",
    "Vai":                      "misterkissi/whisper-small-vai",
    "Kasem":                    "misterkissi/w2v2-lg-xls-r-300m-kasem",
    "Lingala":                  "misterkissi/w2v2-lg-xls-r-300m-lingala",
    "Fongbe":                   "misterkissi/whisper-small-fongbe",
    "Amharic":                  "misterkissi/w2v2-lg-xls-r-1b-amharic",
    "Xhosa":                    "misterkissi/w2v2-lg-xls-r-300m-xhosa",
    "Tsonga":                   "misterkissi/w2v2-lg-xls-r-300m-tsonga",
    "Yoruba":                   "FarmerlineML/w2v-bert-2.0_yoruba_v1",
    "Luganda (FKD)":            "FarmerlineML/luganda_fkd",
    "Luo":                      "FarmerlineML/w2v-bert-2.0_luo_v2",
    "Somali":                   "FarmerlineML/w2v-bert-2.0_somali_alpha",
    "Pidgin":                   "FarmerlineML/pidgin_nigerian",
    "Kikuyu":                   "FarmerlineML/w2v-bert-2.0_kikuyu",
    "Igbo":                     "FarmerlineML/w2v-bert-2.0_igbo_v1",
    "Krio":                     "FarmerlineML/w2v-bert-2.0_krio_v3"
}

# Pre-load pipelines for each language on CPU (device=-1)
asr_pipelines = {
    lang: pipeline(
        task="automatic-speech-recognition",
        model=model_id,
        device=-1,            # force CPU usage
        chunk_length_s=30
    )
    for lang, model_id in language_models.items()
}

def transcribe(audio_path: str, language: str):
    """
    Load the audio via librosa (supports mp3, wav, flac, m4a, ogg, etc.),
    convert to mono, then run it through the chosen ASR pipeline.
    Returns (transcript, runtime_seconds, duration_seconds).
    """
    if not audio_path:
        return "⚠️ Please upload or record an audio clip.", 0.0, 0.0

    # librosa.load returns a 1D np.ndarray (mono) and the sample rate
    speech, sr = librosa.load(audio_path, sr=None, mono=True)
    duration_s = librosa.get_duration(y=speech, sr=sr)

    t0 = time.time()
    result = asr_pipelines[language]({
        "sampling_rate": sr,
        "raw": speech
    })
    runtime_s = time.time() - t0
    text = result.get("text", "")
    return text, round(runtime_s, 3), round(duration_s, 3)

def compute_wer(pred: str, ref: str) -> float:
    if not ref or not pred:
        return None
    try:
        return float(wer(ref, pred))
    except Exception:
        return None

def ensure_logfile():
    if not os.path.exists(LOG_PATH):
        pd.DataFrame(columns=[
            "timestamp", "language", "model_id", "audio_filename",
            "duration_s", "runtime_s", "transcript", "reference",
            "wer", "score_10", "feedback",
            "domain", "environment", "accent_locale"
        ]).to_csv(LOG_PATH, index=False)

def save_feedback(language: str,
                  transcript: str,
                  reference: str,
                  score_10: int,
                  feedback: str,
                  audio_file: str,
                  duration_s: float,
                  runtime_s: float,
                  domain: str,
                  environment: str,
                  accent_locale: str):
    ensure_logfile()
    model_id = language_models.get(language, "")
    audio_filename = os.path.basename(audio_file) if audio_file else ""

    w = compute_wer(transcript, reference)

    row = {
        "timestamp": dt.datetime.utcnow().isoformat(),
        "language": language,
        "model_id": model_id,
        "audio_filename": audio_filename,
        "duration_s": duration_s,
        "runtime_s": runtime_s,
        "transcript": transcript,
        "reference": reference,
        "wer": w,
        "score_10": score_10,
        "feedback": feedback,
        "domain": domain,
        "environment": environment,
        "accent_locale": accent_locale
    }
    try:
        df = pd.read_csv(LOG_PATH)
        df = pd.concat([df, pd.DataFrame([row])], ignore_index=True)
        df.to_csv(LOG_PATH, index=False)
        msg = "βœ… Feedback saved."
        if w is not None:
            msg += f" WER: {w:.3f}"
        return msg
    except Exception as e:
        return f"❌ Could not save feedback: {e}"

def load_metrics():
    ensure_logfile()
    df = pd.read_csv(LOG_PATH)
    if df.empty:
        return "No feedback yet.", None, None, df

    # Aggregates
    # Per-language means:
    per_lang = df.groupby("language").agg(
        n=("wer", "count"),
        mean_WER=("wer", "mean"),
        mean_score=("score_10", "mean"),
        mean_runtime_s=("runtime_s", "mean"),
        mean_duration_s=("duration_s", "mean")
    ).reset_index().sort_values(by="mean_WER", ascending=True)

    # Per-domain (optional):
    per_domain = df.groupby("domain").agg(
        n=("wer", "count"),
        mean_WER=("wer", "mean"),
        mean_score=("score_10", "mean")
    ).reset_index().sort_values(by="mean_WER", ascending=True)

    return "πŸ“Š Metrics updated.", per_lang, per_domain, df

with gr.Blocks(title="🌐 Multilingual ASR Demo", theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        ## πŸŽ™οΈ Multilingual Speech-to-Text + Feedback & Benchmarking
        Upload an audio file (MP3, WAV, FLAC, M4A, OGG,…) or record via your microphone.  
        Choose the language/model and hit **Transcribe**.  
        Optionally provide a **reference transcript** to compute WER, then leave a score & feedback.
        """
    )

    with gr.Tabs():
        with gr.Tab("ASR"):
            with gr.Row():
                lang = gr.Dropdown(
                    choices=list(language_models.keys()),
                    value=list(language_models.keys())[0],
                    label="Select Language / Model"
                )

            with gr.Row():
                audio = gr.Audio(
                    sources=["upload", "microphone"],
                    type="filepath",
                    label="Upload or Record Audio"
                )

            btn = gr.Button("Transcribe", variant="primary")
            output = gr.Textbox(label="Transcription", lines=6)
            runtime = gr.Number(label="Model runtime (s)", precision=3, interactive=False)
            duration = gr.Number(label="Audio duration (s)", precision=3, interactive=False)

            # Feedback / Benchmark block
            gr.Markdown("### πŸ“ Feedback & WER (optional)")
            with gr.Row():
                reference = gr.Textbox(label="Reference transcript (optional, for WER)", lines=4, placeholder="Paste the ground-truth text here to compute WER")
            with gr.Row():
                score = gr.Slider(0, 10, step=1, value=8, label="Overall quality score (0–10)")
            with gr.Row():
                domain = gr.Dropdown(
                    ["General", "Conversational", "News", "Agriculture", "Healthcare", "Education", "Customer support", "Finance", "Legal", "Entertainment", "Other"],
                    value="General",
                    label="Domain/topic"
                )
                environment = gr.Dropdown(
                    ["Quiet", "Office", "Outdoor", "Vehicle", "Crowd/Market", "Radio/Phone", "Other"],
                    value="Quiet",
                    label="Recording environment"
                )
                accent_locale = gr.Textbox(label="Accent / Locale (e.g., Accra, Nairobi, Lagos)", placeholder="Optional")

            feedback = gr.Textbox(label="Free-text feedback", lines=4, placeholder="What worked well? What failed? Any specific words or sounds?")

            save_btn = gr.Button("Save Feedback", variant="secondary")
            save_msg = gr.Markdown("")

            # Wire up
            btn.click(
                fn=transcribe,
                inputs=[audio, lang],
                outputs=[output, runtime, duration]
            )

            save_btn.click(
                fn=save_feedback,
                inputs=[lang, output, reference, score, feedback, audio, duration, runtime, domain, environment, accent_locale],
                outputs=save_msg
            )

        with gr.Tab("Metrics"):
            refresh = gr.Button("Refresh metrics", variant="primary")
            metrics_msg = gr.Markdown()
            per_lang_df = gr.Dataframe(interactive=False, label="Per-language summary (lower WER is better)")
            per_domain_df = gr.Dataframe(interactive=False, label="Per-domain summary")
            logs_df = gr.Dataframe(interactive=False, label="Raw feedback log")

            refresh.click(
                fn=load_metrics,
                inputs=[],
                outputs=[metrics_msg, per_lang_df, per_domain_df, logs_df]
            )

if __name__ == "__main__":
    demo.launch()