File size: 17,152 Bytes
57b796f
ddf6cde
 
 
 
 
8b6d7cc
ea4b615
 
 
ddf6cde
8b6d7cc
ddf6cde
ea4b615
 
ddf6cde
8b6d7cc
 
 
 
 
 
 
 
57b796f
 
8b6d7cc
52ae594
 
 
 
57b796f
b6c35e7
 
 
 
52ae594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b796f
 
52ae594
 
 
57b796f
 
 
 
 
 
52ae594
 
 
57b796f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52ae594
 
 
57b796f
52ae594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbcc780
52ae594
fbcc780
52ae594
 
 
 
 
 
 
 
 
 
 
 
 
fbcc780
52ae594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddf6cde
8b6d7cc
ddf6cde
 
 
 
57b796f
 
ddf6cde
 
 
 
 
293d602
ddf6cde
 
 
 
 
 
 
 
 
 
 
57b796f
 
 
ddf6cde
 
 
 
 
 
fbcc780
4563195
243e427
 
ddf6cde
 
ea4b615
 
 
57b796f
ea4b615
 
57b796f
ea4b615
 
 
 
 
57b796f
 
ea4b615
 
 
 
57b796f
 
 
 
 
 
 
 
ea4b615
57b796f
 
 
 
 
 
ea4b615
57b796f
ea4b615
 
 
 
 
57b796f
ea4b615
 
 
 
 
 
 
 
 
 
 
 
 
 
57b796f
ea4b615
 
 
ddf6cde
 
b6c35e7
 
ddf6cde
57b796f
ddf6cde
 
 
 
 
 
57b796f
 
 
 
 
ddf6cde
 
8b6d7cc
 
 
ddf6cde
 
 
8b6d7cc
ddf6cde
57b796f
ddf6cde
 
 
57b796f
ddf6cde
 
 
 
 
 
 
 
 
57b796f
ddf6cde
 
 
 
 
 
 
 
 
 
57b796f
ddf6cde
ea4b615
 
 
ddf6cde
 
 
57b796f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddf6cde
57b796f
ddf6cde
 
57b796f
 
b6c35e7
ddf6cde
47da0c9
b6c35e7
 
ddf6cde
57b796f
ddf6cde
b6c35e7
 
57b796f
ddf6cde
57b796f
fbcc780
57b796f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81083e5
57b796f
 
 
 
 
 
81083e5
ddf6cde
57b796f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddf6cde
57b796f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# app.py (MP3-robust loader + Luganda FKD commented; minimal feedback)

import os
import json
import time
import uuid
import logging
import shutil
import subprocess
import tempfile
import gradio as gr
from transformers import pipeline
import numpy as np
import soundfile as sf  # librosa depends on this; good for wav/flac/ogg
import librosa  # fallback / resampling

# Optional: modest thread hints for CPU Spaces
try:
    import torch
    torch.set_num_threads(2)
    torch.set_num_interop_threads(1)
except Exception:
    pass

# Basic logging so we can verify which model is loaded per inference
logging.basicConfig(level=logging.INFO)

# --- External logging: push to a HF Dataset repo on each submit (no local storage) ---
from datasets import Dataset, Features, Value, Audio, load_dataset
from huggingface_hub import HfApi

# -------- CONFIG: Hub dataset target (no persistent storage needed) --------
HF_DATASET_REPO = os.environ.get("HF_DATASET_REPO", "DarliAI/asr-feedback-logs")
HF_TOKEN = os.environ.get("HF_TOKEN")
PUSH_TO_HF = bool(HF_TOKEN and HF_DATASET_REPO)

HF_FEATURES = Features({
    "timestamp":        Value("string"),
    "session_id":       Value("string"),
    "language_display": Value("string"),
    "model_id":         Value("string"),
    "model_revision":   Value("string"),

    "audio":            Audio(sampling_rate=None),   # uploaded only if user consents
    "audio_duration_s": Value("float32"),
    "sample_rate":      Value("int32"),
    "source":           Value("string"),
    "decode_params":    Value("string"),

    "transcript_hyp":   Value("string"),
    "corrected_text":   Value("string"),

    "latency_ms":       Value("int32"),
    "rtf":              Value("float32"),

    "score_out_of_10":  Value("int32"),
    "share_publicly":   Value("bool"),
})

def _push_row_to_hf_dataset(row, audio_file_path):
    """
    Append a single example to the HF dataset repo (train split).
    If user didn't consent or no audio path, 'audio' field is None.
    Uses the modern datasets library approach with proper appending.
    """
    if not PUSH_TO_HF:
        return "HF push disabled (missing HF_TOKEN or repo)."

    example = dict(row)

    # Audio: only include if user consented and file exists
    example["audio"] = audio_file_path if (audio_file_path and os.path.isfile(audio_file_path)) else None

    # Normalize types
    def _to_int(v):
        try:
            return int(v)
        except Exception:
            return None
    def _to_float(v):
        try:
            return float(v)
        except Exception:
            return None

    for k in ["latency_ms", "score_out_of_10", "sample_rate"]:
        example[k] = _to_int(example.get(k))
    for k in ["rtf", "audio_duration_s"]:
        example[k] = _to_float(example.get(k))

    # Create a dataset with single row
    ds_new = Dataset.from_list([example], features=HF_FEATURES)

    try:
        # Try to load existing dataset and append
        try:
            # Load existing dataset
            ds_existing = load_dataset(
                HF_DATASET_REPO, 
                split="train",
                token=HF_TOKEN,
                download_mode="force_redownload"  # Ensure we get the latest version
            )
            
            # Concatenate with new data
            ds_combined = ds_existing.add_item(example)
            
            # Push the combined dataset
            ds_combined.push_to_hub(
                HF_DATASET_REPO,
                split="train",
                private=True,
                token=HF_TOKEN,
                commit_message=f"Append feedback row at {example['timestamp']}"
            )
            
            return "Successfully appended to existing HF Dataset."
            
        except Exception as e:
            # If dataset doesn't exist or error loading, create new
            if "404" in str(e) or "doesn't exist" in str(e) or "EmptyDatasetError" in str(e):
                # Dataset doesn't exist, create it
                ds_new.push_to_hub(
                    HF_DATASET_REPO,
                    split="train",
                    private=True,
                    token=HF_TOKEN,
                    commit_message="Initialize dataset with first feedback row"
                )
                return "Created new HF Dataset with first row."
            else:
                # Try alternative approach: push with create_pr=True to avoid conflicts
                ds_new.push_to_hub(
                    HF_DATASET_REPO,
                    split="train",
                    private=True,
                    token=HF_TOKEN,
                    commit_message=f"Append feedback row at {example['timestamp']}",
                    create_pr=True  # Create a PR to avoid conflicts
                )
                return "Pushed to HF Dataset via PR (will auto-merge)."
                
    except Exception as e:
        logging.error(f"Failed to push to HF Dataset: {e}")
        
        # Final fallback: try using HfApi to check if repo exists
        try:
            api = HfApi()
            api.dataset_info(HF_DATASET_REPO, token=HF_TOKEN)
            
            # Repo exists, try one more time with force push
            ds_new.push_to_hub(
                HF_DATASET_REPO,
                split=f"train_{int(time.time())}",  # Use unique split name as last resort
                private=True,
                token=HF_TOKEN,
                commit_message=f"Append feedback row at {example['timestamp']}"
            )
            return f"Pushed to HF Dataset with unique split."
            
        except Exception as final_error:
            return f"Failed to push to HF Dataset: {final_error}"

# --- Map display names to your HF Hub model IDs ---
language_models = {
    "Akan (Asante Twi)":        "FarmerlineML/w2v-bert-2.0_twi_alpha_v1",
    "Ewe":                      "FarmerlineML/w2v-bert-2.0_ewe_2",
    "Kiswahili":                "FarmerlineML/w2v-bert-2.0_swahili_alpha",
    "Luganda":                  "FarmerlineML/w2v-bert-2.0_luganda",   # active
    # "Luganda (FKD)":          "FarmerlineML/luganda_fkd",            # commented out per request
    "Brazilian Portuguese":     "FarmerlineML/w2v-bert-2.0_brazilian_portugese_alpha",
    "Fante":                    "misterkissi/w2v2-lg-xls-r-300m-fante", 
    "Bemba":                    "DarliAI/kissi-w2v2-lg-xls-r-300m-bemba",
    "Bambara":                  "DarliAI/kissi-w2v2-lg-xls-r-300m-bambara",
    "Dagaare":                  "DarliAI/kissi-w2v2-lg-xls-r-300m-dagaare",
    "Kinyarwanda":              "misterkissi/w2v2-lg-xls-r-300m-kinyarwanda-v2",
    "Fula":                     "DarliAI/kissi-wav2vec2-fula-fleurs-full",
    "Oromo":                    "DarliAI/kissi-w2v-bert-2.0-oromo",
    "Runynakore":               "misterkissi/w2v2-lg-xls-r-300m-runyankore",
    "Ga":                       "misterkissi/w2v2-lg-xls-r-300m-ga",
    "Vai":                      "misterkissi/whisper-small-vai",
    "Kasem":                    "misterkissi/w2v2-lg-xls-r-300m-kasem",
    "Lingala":                  "misterkissi/w2v2-lg-xls-r-300m-lingala",
    "Fongbe":                   "misterkissi/whisper-small-fongbe",
    "Amharic":                  "misterkissi/w2v2-lg-xls-r-1b-amharic",
    "Xhosa":                    "misterkissi/w2v2-lg-xls-r-300m-xhosa",
    "Tsonga":                   "misterkissi/w2v2-lg-xls-r-300m-tsonga",
    # "WOLOF":                  "misterkissi/w2v2-lg-xls-r-1b-wolof",
    # "HAITIAN CREOLE":         "misterkissi/whisper-small-haitian-creole",
    # "KABYLE":                 "misterkissi/w2v2-lg-xls-r-1b-kabyle",
    "Yoruba":                   "FarmerlineML/w2v-bert-2.0_yoruba_v1",
    "Luo":                      "FarmerlineML/w2v-bert-2.0_luo_v2",
    "Somali":                   "FarmerlineML/w2v-bert-2.0_somali_alpha",
    "Pidgin":                   "FarmerlineML/pidgin_nigerian",
    "Kikuyu":                   "FarmerlineML/w2v-bert-2.0_kikuyu",
    "Igbo":                     "FarmerlineML/w2v-bert-2.0_igbo_v1",
    "Krio":                     "FarmerlineML/w2v-bert-2.0_krio_v3",
    "Dyula":                    "FarmerlineML/w2v-bert-2.0_dyula",
    "Kamba":                   "FarmerlineML/w2v-bert-2.0_kamba"
    
}

# -------- Robust audio loader (handles MP3/M4A via ffmpeg; wav/flac via soundfile) --------
TARGET_SR = 16000

def _has_ffmpeg():
    return shutil.which("ffmpeg") is not None

def _load_with_soundfile(path):
    data, sr = sf.read(path, always_2d=False)
    if isinstance(data, np.ndarray) and data.ndim > 1:
        data = data.mean(axis=1)
    return data.astype(np.float32), sr

def _load_with_ffmpeg(path, target_sr=TARGET_SR):
    # Convert to mono 16k wav in a temp file using ffmpeg
    if not _has_ffmpeg():
        raise RuntimeError("ffmpeg not available")
    tmp_wav = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
    tmp_wav.close()
    cmd = [
        "ffmpeg", "-hide_banner", "-loglevel", "error",
        "-y", "-i", path,
        "-ac", "1", "-ar", str(target_sr),
        tmp_wav.name,
    ]
    subprocess.run(cmd, check=True)
    data, sr = sf.read(tmp_wav.name, always_2d=False)
    try:
        os.remove(tmp_wav.name)
    except Exception:
        pass
    if isinstance(data, np.ndarray) and data.ndim > 1:
        data = data.mean(axis=1)
    return data.astype(np.float32), sr

def _resample_if_needed(y, sr, target_sr=TARGET_SR):
    if sr == target_sr:
        return y.astype(np.float32), sr
    y_rs = librosa.resample(y.astype(np.float32), orig_sr=sr, target_sr=target_sr)
    return y_rs.astype(np.float32), target_sr

def load_audio_any(path, target_sr=TARGET_SR):
    """Robust loader: wav/flac/ogg via soundfile; mp3/m4a via ffmpeg; fallback to librosa."""
    ext = os.path.splitext(path)[1].lower()
    try:
        if ext in {".wav", ".flac", ".ogg", ".opus"}:
            y, sr = _load_with_soundfile(path)
        elif _has_ffmpeg():
            y, sr = _load_with_ffmpeg(path, target_sr=target_sr)
            return y, sr  # already mono+16k
        else:
            # Fallback to librosa for formats like mp3/m4a when ffmpeg isn't present
            y, sr = librosa.load(path, sr=None, mono=True)
        y, sr = _resample_if_needed(y, sr, target_sr)
        return y, sr
    except Exception as e:
        logging.warning(f"[AUDIO] Primary load failed for {path} ({e}). Falling back to librosa.")
        y, sr = librosa.load(path, sr=target_sr, mono=True)
        return y.astype(np.float32), sr

# -------- Lazy-load pipeline cache (Space-safe) --------
_PIPELINE_CACHE = {}
_CACHE_ORDER = []  # usage order
_CACHE_MAX_SIZE = 3  # tune for RAM

def _touch_cache(key):
    if key in _CACHE_ORDER:
        _CACHE_ORDER.remove(key)
    _CACHE_ORDER.insert(0, key)

def _evict_if_needed():
    while len(_PIPELINE_CACHE) > _CACHE_MAX_SIZE:
        oldest = _CACHE_ORDER.pop()
        try:
            del _PIPELINE_CACHE[oldest]
        except KeyError:
            pass

def get_asr_pipeline(language_display: str):
    if language_display not in language_models:
        raise ValueError(f"Unknown language selection: {language_display}")

    if language_display in _PIPELINE_CACHE:
        _touch_cache(language_display)
        return _PIPELINE_CACHE[language_display]

    model_id = language_models[language_display]
    logging.info(f"[ASR] Loading pipeline for '{language_display}' -> {model_id}")
    pipe = pipeline(
        task="automatic-speech-recognition",
        model=model_id,
        device=-1,          # CPU on Spaces (explicit)
        chunk_length_s=30
    )
    _PIPELINE_CACHE[language_display] = pipe
    _touch_cache(language_display)
    _evict_if_needed()
    return pipe

# -------- Helpers --------
def _model_revision_from_pipeline(pipe) -> str:
    # Best-effort capture of revision/hash for reproducibility
    for attr in ("hub_revision", "revision", "_commit_hash"):
        val = getattr(getattr(pipe, "model", None), attr, None)
        if val:
            return str(val)
    try:
        return str(getattr(pipe.model.config, "_name_or_path", "unknown"))
    except Exception:
        return "unknown"

# -------- Inference --------
def transcribe(audio_path: str, language: str):
    """
    Robust audio load (mp3/m4a friendly), resample to 16 kHz mono,
    then run it through the chosen ASR pipeline.
    Returns transcript and a meta dict for feedback.
    """
    if not audio_path:
        return "⚠️ Please upload or record an audio clip.", None

    speech, sr = load_audio_any(audio_path, target_sr=TARGET_SR)
    duration_s = float(len(speech) / float(sr))

    pipe = get_asr_pipeline(language)
    decode_params = {"chunk_length_s": getattr(pipe, "chunk_length_s", 30)}

    t0 = time.time()
    result = pipe({"sampling_rate": sr, "raw": speech})
    latency_ms = int((time.time() - t0) * 1000.0)
    hyp_text = result.get("text", "")

    rtf = (latency_ms / 1000.0) / max(duration_s, 1e-9)

    meta = {
        "timestamp": time.strftime("%Y-%m-%dT%H:%M:%SZ", time.gmtime()),
        "session_id": f"anon-{uuid.uuid4()}",
        "language_display": language,
        "model_id": language_models.get(language, "unknown"),
        "model_revision": _model_revision_from_pipeline(pipe),
        "audio_duration_s": duration_s,
        "sample_rate": sr,
        "source": "upload",
        "decode_params": json.dumps(decode_params),
        "transcript_hyp": hyp_text,
        "latency_ms": latency_ms,
        "rtf": rtf,
    }
    return hyp_text, meta

# -------- Feedback submit (minimal) --------
def submit_feedback(meta, corrected_text, score, store_audio, share_publicly, audio_file_path):
    """
    Push a minimal row to HF Dataset: model info, language, transcript, optional corrected text, score.
    """
    if not meta:
        return {"status": "No transcription metadata available. Please transcribe first."}

    row = dict(meta)
    row.update({
        "corrected_text": (corrected_text or "").strip(),
        "score_out_of_10": int(score) if score is not None else None,
        "share_publicly": bool(share_publicly),
    })

    try:
        audio_to_push = audio_file_path if store_audio else None
        hf_status = _push_row_to_hf_dataset(row, audio_to_push)
        status = f"Feedback saved. {hf_status}"
    except Exception as e:
        status = f"Failed to push to HF Dataset: {e}"
        logging.error(f"Push error: {e}")

    return {
        "status": status,
        "latency_ms": row["latency_ms"],
        "rtf": row["rtf"],
        "model_id": row["model_id"],
        "model_revision": row["model_revision"],
        "language": row["language_display"],
    }

# -------- UI (original preserved; additions appended) --------
with gr.Blocks(title="🌐 Multilingual ASR Demo") as demo:
    gr.Markdown(
        """
        ## πŸŽ™οΈ Multilingual Speech-to-Text   
        Upload an audio file (MP3, WAV, FLAC, M4A, OGG,…) or record via your microphone.  
        Then choose the language/model and hit **Transcribe**.
        """
    )

    with gr.Row():
        lang = gr.Dropdown(
            choices=list(language_models.keys()),
            value=list(language_models.keys())[0],
            label="Select Language / Model"
        )

    with gr.Row():
        audio = gr.Audio(
            sources=["upload", "microphone"],
            type="filepath",
            label="Upload or Record Audio"
        )

    btn = gr.Button("Transcribe")
    output = gr.Textbox(label="Transcription")

    # Hidden state to carry metadata from transcribe -> feedback
    meta_state = gr.State(value=None)

    # Keep original behavior: output shows transcript
    # Also capture meta into the hidden state
    def _transcribe_and_store(audio_path, language):
        hyp, meta = transcribe(audio_path, language)
        # Pre-fill corrected with hypothesis for easy edits
        return hyp, meta, hyp

    # --- Minimal Evaluation (score + optional corrected text) ---
    with gr.Accordion("Evaluation", open=False):
        with gr.Row():
            corrected_tb = gr.Textbox(label="Corrected transcript (optional)", lines=4, value="")
        with gr.Row():
            score_slider = gr.Slider(minimum=0, maximum=10, step=1, label="Score out of 10", value=7)
        with gr.Row():
            store_audio_cb = gr.Checkbox(label="Allow storing my audio for research/eval", value=False)
            share_cb = gr.Checkbox(label="Allow sharing this example publicly", value=False)

        submit_btn = gr.Button("Submit")
        results_json = gr.JSON(label="Status")

    # Wire events
    btn.click(
        fn=_transcribe_and_store,
        inputs=[audio, lang],
        outputs=[output, meta_state, corrected_tb]
    )

    submit_btn.click(
        fn=submit_feedback,
        inputs=[
            meta_state,
            corrected_tb,
            score_slider,
            store_audio_cb,
            share_cb,
            audio  # raw file path from gr.Audio
        ],
        outputs=results_json
    )

# Keep Spaces stable under load
if __name__ == "__main__":
    demo.queue()
    demo.launch()