dingo / app.py
DataEval's picture
gradio: 提示
99c0a36 verified
raw
history blame
16.9 kB
import json
import os
import pprint
import shutil
from functools import partial
from pathlib import Path
import gradio as gr
from dingo.exec import Executor
from dingo.io import InputArgs
def dingo_demo(
uploaded_file,
dataset_source, data_format, input_path, max_workers, batch_size,
column_id, column_prompt, column_content, column_image,
rule_list, prompt_list, scene_list,
model, key, api_url
):
if not data_format:
raise gr.Error('ValueError: data_format can not be empty, please input.')
if not column_content:
raise gr.Error('ValueError: column_content can not be empty, please input.')
if not rule_list and not prompt_list:
raise gr.Error('ValueError: rule_list and prompt_list can not be empty at the same time.')
# Handle input path based on dataset source
if dataset_source == "hugging_face":
if not input_path:
raise gr.Error('ValueError: input_path can not be empty for hugging_face dataset, please input.')
final_input_path = input_path
else: # local
if not uploaded_file:
raise gr.Error('Please upload a file for local dataset.')
file_base_name = os.path.basename(uploaded_file.name)
if not str(file_base_name).endswith(('.jsonl', '.json', '.txt')):
raise gr.Error('File format must be \'.jsonl\', \'.json\' or \'.txt\'')
final_input_path = uploaded_file.name
if max_workers <= 0:
raise gr.Error('Please input value > 0 in max_workers.')
if batch_size <= 0:
raise gr.Error('Please input value > 0 in batch_size.')
try:
input_data = {
"dataset": dataset_source,
"data_format": data_format,
"input_path": final_input_path,
"output_path": "" if dataset_source == 'hugging_face' else os.path.dirname(final_input_path),
"save_data": True,
"save_raw": True,
"max_workers": max_workers,
"batch_size": batch_size,
"column_content": column_content,
"custom_config":{
"rule_list": rule_list,
"prompt_list": prompt_list,
"llm_config": {
scene_list: {
"model": model,
"key": key,
"api_url": api_url,
}
}
}
}
if column_id:
input_data['column_id'] = column_id
if column_prompt:
input_data['column_prompt'] = column_prompt
if column_image:
input_data['column_image'] = column_image
# print(input_data)
# exit(0)
input_args = InputArgs(**input_data)
executor = Executor.exec_map["local"](input_args)
summary = executor.execute().to_dict()
detail = executor.get_bad_info_list()
new_detail = []
for item in detail:
new_detail.append(item)
if summary['output_path']:
shutil.rmtree(summary['output_path'])
# 返回两个值:概要信息和详细信息
return json.dumps(summary, indent=4), new_detail
except Exception as e:
raise gr.Error(str(e))
def update_input_components(dataset_source):
# 根据数据源的不同,返回不同的输入组件
if dataset_source == "hugging_face":
# 如果数据源是huggingface,返回一个可见的文本框和一个不可见的文件组件
return [
gr.Textbox(visible=True),
gr.File(visible=False),
]
else: # local
# 如果数据源是本地,返回一个不可见的文本框和一个可见的文件组件
return [
gr.Textbox(visible=False),
gr.File(visible=True),
]
def update_rule_list(rule_type_mapping, rule_type):
return gr.CheckboxGroup(
choices=rule_type_mapping.get(rule_type, []),
value=[],
label="rule_list"
)
def update_prompt_list(scene_prompt_mapping, scene):
"""根据选择的场景更新可用的prompt列表,并清空所有勾选"""
return gr.CheckboxGroup(
choices=scene_prompt_mapping.get(scene, []),
value=[], # 清空所有勾选
label="prompt_list"
)
# prompt_list变化时,动态控制model、key、api_url的显示
def toggle_llm_fields(prompt_values):
visible = bool(prompt_values)
return (
gr.update(visible=visible),
gr.update(visible=visible),
gr.update(visible=visible)
)
# 控制column_id、column_prompt、column_content、column_image的显示
def update_column_fields(rule_list, prompt_list):
rule_type_mapping = get_rule_type_mapping()
scene_prompt_mapping = get_scene_prompt_mapping()
data_column_mapping = get_data_column_mapping()
status_mapping = {
'id': False,
'prompt': False,
'content': False,
'image': False,
}
res = (
gr.update(visible=status_mapping['id']),
gr.update(visible=status_mapping['prompt']),
gr.update(visible=status_mapping['content']),
gr.update(visible=status_mapping['image'])
)
if not rule_list and not prompt_list:
return res
key_list = []
key_list += get_key_by_mapping(rule_type_mapping, rule_list)
key_list += get_key_by_mapping(scene_prompt_mapping, prompt_list)
data_column = []
for key in key_list:
if not data_column:
data_column = data_column_mapping[key]
else:
new_data_column = data_column_mapping[key]
if data_column != new_data_column:
raise gr.Error(f'ConflictError: {key} need data type is different from other.')
for c in data_column:
status_mapping[c] = True
res = (
gr.update(visible=status_mapping['id']),
gr.update(visible=status_mapping['prompt']),
gr.update(visible=status_mapping['content']),
gr.update(visible=status_mapping['image'])
)
return res
def get_rule_type_mapping():
return {
'QUALITY_BAD_COMPLETENESS': ['RuleLineEndWithEllipsis', 'RuleLineEndWithTerminal', 'RuleSentenceNumber',
'RuleWordNumber'],
'QUALITY_BAD_EFFECTIVENESS': ['RuleAbnormalChar', 'RuleAbnormalHtml', 'RuleAlphaWords', 'RuleCharNumber',
'RuleColonEnd', 'RuleContentNull', 'RuleContentShort', 'RuleContentShortMultiLan',
'RuleEnterAndSpace', 'RuleEnterMore', 'RuleEnterRatioMore', 'RuleHtmlEntity',
'RuleHtmlTag', 'RuleInvisibleChar', 'RuleLineJavascriptCount', 'RuleLoremIpsum',
'RuleMeanWordLength', 'RuleSpaceMore', 'RuleSpecialCharacter', 'RuleStopWord',
'RuleSymbolWordRatio', 'RuleOnlyUrl'],
'QUALITY_BAD_FLUENCY': ['RuleAbnormalNumber', 'RuleCharSplit', 'RuleNoPunc', 'RuleWordSplit', 'RuleWordStuck'],
'QUALITY_BAD_RELEVANCE': ['RuleHeadWordAr'],
'QUALITY_BAD_SIMILARITY': ['RuleDocRepeat'],
'QUALITY_BAD_UNDERSTANDABILITY': ['RuleCapitalWords', 'RuleCurlyBracket', 'RuleLineStartWithBulletpoint',
'RuleUniqueWords'],
'QUALITY_BAD_IMG_EFFECTIVENESS': ['RuleImageValid', 'RuleImageSizeValid', 'RuleImageQuality'],
'QUALITY_BAD_IMG_RELEVANCE': ['RuleImageTextSimilarity'],
'QUALITY_BAD_IMG_SIMILARITY': ['RuleImageRepeat']
}
def get_scene_prompt_mapping():
return {
# 示例映射关系,你可以根据实际需求修改
"LLMTextQualityPromptBase": ['PromptRepeat', 'PromptContentChaos'],
'LLMTextQualityModelBase': ['PromptTextQualityV3', 'PromptTextQualityV4'],
'LLMSecurityPolitics': ['PromptPolitics'],
'LLMSecurityProhibition': ['PromptProhibition'],
'LLMText3HHarmless': ['PromptTextHelpful'],
'LLMText3HHelpful': ['PromptTextHelpful'],
'LLMText3HHonest': ['PromptTextHonest'],
'LLMClassifyTopic': ['PromptClassifyTopic'],
'LLMClassifyQR': ['PromptClassifyQR'],
"VLMImageRelevant": ["PromptImageRelevant"],
}
def get_key_by_mapping(map_dict: dict, value_list: list):
key_list = []
for k,v in map_dict.items():
if bool(set(v) & set(value_list)):
key_list.append(k)
return key_list
def get_data_column_mapping():
return {
'LLMTextQualityPromptBase': ['content'],
'LLMTextQualityModelBase': ['content'],
'LLMSecurityPolitics': ['content'],
'LLMSecurityProhibition': ['content'],
'LLMText3HHarmless': ['content'],
'LLMText3HHelpful': ['content'],
'LLMText3HHonest': ['content'],
'LLMClassifyTopic': ['content'],
'LLMClassifyQR': ['content'],
'VLMImageRelevant': ['prompt', 'content'],
'QUALITY_BAD_COMPLETENESS': ['content'],
'QUALITY_BAD_EFFECTIVENESS': ['content'],
'QUALITY_BAD_FLUENCY': ['content'],
'QUALITY_BAD_RELEVANCE': ['content'],
'QUALITY_BAD_SIMILARITY': ['content'],
'QUALITY_BAD_UNDERSTANDABILITY': ['content'],
'QUALITY_BAD_IMG_EFFECTIVENESS': ['image'],
'QUALITY_BAD_IMG_RELEVANCE': ['content','image'],
'QUALITY_BAD_IMG_SIMILARITY': ['content'],
}
if __name__ == '__main__':
rule_type_mapping = get_rule_type_mapping()
rule_type_options = list(rule_type_mapping.keys())
scene_prompt_mapping = get_scene_prompt_mapping()
scene_options = list(scene_prompt_mapping.keys())
current_dir = Path(__file__).parent
with open(os.path.join(current_dir, 'header.html'), "r") as file:
header = file.read()
with gr.Blocks() as demo:
gr.HTML(header)
with gr.Row():
with gr.Column():
with gr.Column():
dataset_source = gr.Dropdown(
choices=["hugging_face", "local"],
value="hugging_face",
label="dataset [source]"
)
input_path = gr.Textbox(
value='chupei/format-jsonl',
placeholder="please input hugging_face dataset path",
label="input_path",
visible=True
)
uploaded_file = gr.File(
label="upload file",
visible=False
)
data_format = gr.Dropdown(
["jsonl", "json", "plaintext", "listjson"],
label="data_format"
)
with gr.Row():
max_workers = gr.Number(
value=1,
# placeholder="",
label="max_workers",
precision=0
)
batch_size = gr.Number(
value=1,
# placeholder="",
label="batch_size",
precision=0
)
# Add the rule_type dropdown near where scene_list is defined
rule_type = gr.Dropdown(
choices=rule_type_options,
value=rule_type_options[0],
label="rule_type",
interactive=True
)
rule_list = gr.CheckboxGroup(
choices=rule_type_mapping.get(rule_type_options[0], []),
label="rule_list"
)
# 添加场景选择下拉框
scene_list = gr.Dropdown(
choices=scene_options,
value=scene_options[0],
label="scene_list",
interactive=True
)
prompt_list = gr.CheckboxGroup(
choices=scene_prompt_mapping.get(scene_options[0], []),
label="prompt_list"
)
# LLM模型名
model = gr.Textbox(
placeholder="If want to use llm, please input model, such as: deepseek-chat",
label="model",
visible=False
)
# LLM API KEY
key = gr.Textbox(
placeholder="If want to use llm, please input key, such as: 123456789012345678901234567890xx",
label="API KEY",
visible=False
)
# LLM API URL
api_url = gr.Textbox(
placeholder="If want to use llm, please input api_url, such as: https://api.deepseek.com/v1",
label="API URL",
visible=False
)
with gr.Row():
# 字段映射说明文本,带示例链接
with gr.Column():
gr.Markdown("Field Matching: Please input the column name of dataset in the input boxes below ( [examples](https://github.com/MigoXLab/dingo/tree/main/examples) )")
column_id = gr.Textbox(
value="",
placeholder="Column name of id in the input file. If exists multiple levels, use '.' separate",
label="column_id",
visible=False
)
column_prompt = gr.Textbox(
value="",
placeholder="Column name of prompt in the input file. If exists multiple levels, use '.' separate",
label="column_prompt",
visible=False
)
column_content = gr.Textbox(
value="content",
placeholder="Column name of content in the input file. If exists multiple levels, use '.' separate",
label="column_content",
visible=False
)
column_image = gr.Textbox(
value="",
placeholder="Column name of image in the input file. If exists multiple levels, use '.' separate",
label="column_image",
visible=False
)
with gr.Row():
submit_single = gr.Button(value="Submit", interactive=True, variant="primary")
with gr.Column():
# 修改输出组件部分,使用Tabs
with gr.Tabs():
with gr.Tab("Result Summary"):
summary_output = gr.Textbox(label="summary", max_lines=50)
with gr.Tab("Result Detail"):
detail_output = gr.JSON(label="detail", max_height=800) # 使用JSON组件来更好地展示结构化数据
dataset_source.change(
fn=update_input_components,
inputs=dataset_source,
outputs=[input_path, uploaded_file]
)
rule_type.change(
fn=partial(update_rule_list, rule_type_mapping),
inputs=rule_type,
outputs=rule_list
)
# 场景变化时更新prompt列表
scene_list.change(
fn=partial(update_prompt_list, scene_prompt_mapping),
inputs=scene_list,
outputs=prompt_list
)
prompt_list.change(
fn=toggle_llm_fields,
inputs=prompt_list,
outputs=[model, key, api_url]
)
# column字段显示控制
for comp in [rule_list, prompt_list]:
comp.change(
fn=update_column_fields,
inputs=[rule_list, prompt_list],
outputs=[column_id, column_prompt, column_content, column_image]
)
submit_single.click(
fn=dingo_demo,
inputs=[
uploaded_file,
dataset_source, data_format, input_path, max_workers, batch_size,
column_id, column_prompt, column_content, column_image,
rule_list, prompt_list, scene_list,
model, key, api_url
],
outputs=[summary_output, detail_output] # 修改输出为两个组件
)
# 启动界面
demo.launch()