File size: 4,690 Bytes
939b332
 
 
01dd930
939b332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01dd930
 
 
939b332
 
 
 
 
 
 
 
 
 
 
01dd930
939b332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fe85f
939b332
57fe85f
 
 
 
 
 
 
 
 
939b332
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import numpy as np
import pandas as pd

from utils.config_band import config_band
from utils.convert_to_excel import convert_dfs, save_dataframe
from utils.utils_vars import UtilsVars, get_band

LNCEL_COLUMNS = [
    "ID_LNBTS",
    "ID_LNCEL",
    "MRBTS",
    "LNBTS",
    "LNCEL",
    "final_name",
    "name",
    "cellName",
    "code",
    "SectorId",
    "Code_Sector",
    "actModulationSchemeDl",
    "actModulationSchemeUL",
    "administrativeState",
    "eutraCelId",
    "lcrId",
    "pMax",
    "phyCellId",
    "tac",
    "Region",
    "band",
    "band_type",
]


LNCEL_FDD_COLUMNS = [
    "ID_LNCEL",
    "dlChBw",
    "dlMimoMode",
    "dlRsBoost",
    "earfcnDL",
    "earfcnUL",
    "prachCS",
    "rootSeqIndex",
    "ulChBw",
]

LNCEL_TDD_COLUMNS = [
    "ID_LNCEL",
    "chBw",
    "dlMimoMode",
    "dlRsBoost",
    "earfcn",
    "prachCS",
    "rootSeqIndex",
]


def process_lte_data(file_path: str):
    """
    Process data from the specified file path.

    Args:
        file_path (str): The path to the file.
    """
    # Read excel sheets into dataframes
    dfs = pd.read_excel(
        file_path,
        sheet_name=["LNCEL", "LNBTS", "LNCEL_FDD", "LNCEL_TDD"],
        engine="calamine",
        skiprows=[0],
    )

    # Process LNCEL data
    df_lncel = dfs["LNCEL"]
    df_lncel.columns = df_lncel.columns.str.replace(r"[ ]", "", regex=True)
    df_lncel["final_name"] = df_lncel["name"].fillna(df_lncel["cellName"])
    df_lncel["code"] = df_lncel["final_name"].str.split("_").str[0]
    df_lncel["SectorId"] = (
        df_lncel["lcrId"].map(UtilsVars.sector_mapping).fillna(df_lncel["lcrId"])
    )
    df_lncel["Code_Sector"] = (
        df_lncel[["code", "SectorId"]]
        .astype(str)
        .apply("_".join, axis=1)
        .str.replace(".0", "")
        .str.lstrip("0")
    )
    df_lncel["ID_LNCEL"] = (
        df_lncel[["MRBTS", "LNBTS", "LNCEL"]].astype(str).apply("_".join, axis=1)
    )
    df_lncel["ID_LNBTS"] = (
        df_lncel[["MRBTS", "LNBTS"]].astype(str).apply("_".join, axis=1)
    )
    df_lncel["Region"] = df_lncel["final_name"].str.split("_").str[1]
    df_lncel["band"] = df_lncel["final_name"].apply(get_band)
    df_lncel["band_type"] = np.where(df_lncel["band"] == "L2300", "TDD", "FDD")
    df_lncel = df_lncel[LNCEL_COLUMNS]

    # create band dataframe
    df_band = config_band(df_lncel)

    # Process LNBTS data
    df_lnbts = dfs["LNBTS"]
    df_lnbts.columns = df_lnbts.columns.str.replace(r"[ ]", "", regex=True)
    df_lnbts["ID_LNBTS"] = (
        df_lnbts[["MRBTS", "LNBTS"]].astype(str).apply("_".join, axis=1)
    )
    df_lnbts.rename(columns={"name": "lnbts_name"}, inplace=True)
    df_lnbts = df_lnbts[["ID_LNBTS", "lnbts_name"]]

    # Merge dataframes
    df_lncel_lnbts = pd.merge(df_lncel, df_lnbts, on="ID_LNBTS", how="left")
    df_lncel_lnbts = pd.merge(df_lncel_lnbts, df_band, on="code", how="left")

    df_physical_db = UtilsVars.physisal_db
    df_physical_db = df_physical_db[
        ["Code_Sector", "Azimut", "Longitude", "Latitude", "Hauteur"]
    ]
    df_lncel_lnbts = pd.merge(
        df_lncel_lnbts, df_physical_db, on="Code_Sector", how="left"
    )

    # Process LNCEL_FDD and LNCEL_TDD data
    df_lncel_fdd = dfs["LNCEL_FDD"]
    df_lncel_fdd.columns = df_lncel_fdd.columns.str.replace(r"[ ]", "", regex=True)
    df_lncel_fdd["ID_LNCEL"] = (
        df_lncel_fdd[["MRBTS", "LNBTS", "LNCEL"]].astype(str).apply("_".join, axis=1)
    )
    df_lncel_fdd = df_lncel_fdd[LNCEL_FDD_COLUMNS]

    df_lncel_tdd = dfs["LNCEL_TDD"]
    df_lncel_tdd.columns = df_lncel_tdd.columns.str.replace(r"[ ]", "", regex=True)
    df_lncel_tdd["ID_LNCEL"] = (
        df_lncel_tdd[["MRBTS", "LNBTS", "LNCEL"]].astype(str).apply("_".join, axis=1)
    )
    df_lncel_tdd = df_lncel_tdd[LNCEL_TDD_COLUMNS]

    # Create df_fdd and df_tdd base on "band"
    df_fdd = df_lncel_lnbts[df_lncel_lnbts["band"] != "L2300"]
    df_tdd = df_lncel_lnbts[df_lncel_lnbts["band"] == "L2300"]

    df_fdd_final = pd.merge(df_fdd, df_lncel_fdd, on="ID_LNCEL", how="left")
    df_tdd_final = pd.merge(df_tdd, df_lncel_tdd, on="ID_LNCEL", how="left")

    # Save dataframes
    # save_dataframe(df_fdd_final, "fdd")
    # save_dataframe(df_tdd_final, "tdd")
    UtilsVars.all_db_dfs.extend([df_fdd_final, df_tdd_final])

    return [df_fdd_final, df_tdd_final]
    # add the fdd and tdd to the list

    # UtilsVars.final_lte_database = [df_fdd_final, df_tdd_final]


def process_lte_data_to_excel(file_path: str):
    lte_dfs = process_lte_data(file_path)
    UtilsVars.final_lte_database = convert_dfs(lte_dfs, ["LTE_FDD", "LTE_TDD"])


# process_lte_data(r"data2\20240805_5810_05082024_Dump.xml.gz.xlsb")