File size: 5,886 Bytes
263b2ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import pandas as pd

from utils.convert_to_excel import convert_dfs, save_dataframe
from utils.utils_vars import UtilsVars

ADCE_INITIAL_COLUMNS = [
    "ID_BTS",
    "lac_id",
]

ADJS_INITIAL_COLUMNS = [
    "ID_WCEL",
    "lac_id",
]

BTS_SOURCE = [
    "ID_BTS",
    "name",
]
BTS_TARGET = [
    "lac_id",
    "name",
]

WCEL_SOURCE = [
    "ID_WCEL",
    "name",
]

WCEL_TARGET = [
    "lac_id",
    "name",
]


def process_neighbors_data(file_path: str):
    """
    Process data from the specified file path.

    Args:
        file_path (str): The path to the file.
    """
    # Read the specific sheet into a DataFrame
    dfs = pd.read_excel(
        file_path,
        sheet_name=["ADCE", "ADJS", "ADJI", "ADJG", "ADJW", "BTS", "WCEL"],
        engine="calamine",
        skiprows=[0],
    )

    # # Process ADCE data
    df_adce = dfs["ADCE"]
    df_adce.columns = df_adce.columns.str.replace(r"[ ]", "", regex=True)
    df_adce["ID_BTS"] = (
        df_adce[["BSC", "BCF", "BTS"]].astype(str).apply("_".join, axis=1)
    )
    df_adce["lac_id"] = (
        df_adce[["adjacentCellIdLac", "adjacentCellIdCI"]]
        .astype(str)
        .apply("_".join, axis=1)
    )
    df_adce["lac_id"] = df_adce["lac_id"].str.replace(".0", "")
    df_adce = df_adce[ADCE_INITIAL_COLUMNS]

    # Process BTS data
    df_bts = dfs["BTS"]
    df_bts.columns = df_bts.columns.str.replace(r"[ ]", "", regex=True)
    df_bts["ID_BTS"] = df_bts[["BSC", "BCF", "BTS"]].astype(str).apply("_".join, axis=1)
    df_bts["lac_id"] = (
        df_bts[["locationAreaIdLAC", "cellId"]].astype(str).apply("_".join, axis=1)
    )

    df_bts_source = df_bts[BTS_SOURCE]
    df_bts_source.rename(columns={"name": "SOURCE_NAME"}, inplace=True)

    df_bts_target = df_bts[BTS_TARGET]
    df_bts_target.rename(columns={"name": "TARGET_NAME"}, inplace=True)

    # #create final adce
    df_adce_final = pd.merge(df_adce, df_bts_source, on="ID_BTS", how="left")
    df_adce_final = pd.merge(
        df_adce_final, df_bts_target, on="lac_id", how="left"
    ).dropna()
    df_adce_final.rename(
        columns={"ID_BTS": "SOURCE_ID", "lac_id": "TARGET_LAC_ID"}, inplace=True
    )

    # process ADJS data
    df_adjs = dfs["ADJS"]
    df_adjs.columns = df_adjs.columns.str.replace(r"[ ]", "", regex=True)

    df_adjs["ID_WCEL"] = (
        df_adjs[["RNC", "WBTS", "WCEL"]].astype(str).apply("_".join, axis=1)
    )
    df_adjs["lac_id"] = (
        df_adjs[["AdjsLAC", "AdjsCI"]].astype(str).apply("_".join, axis=1)
    )
    df_adjs = df_adjs[ADJS_INITIAL_COLUMNS]

    # process WCEL DATA
    df_wcel = dfs["WCEL"]
    df_wcel.columns = df_wcel.columns.str.replace(r"[ ]", "", regex=True)
    df_wcel["ID_WCEL"] = (
        df_wcel[["RNC", "WBTS", "WCEL"]].astype(str).apply("_".join, axis=1)
    )
    df_wcel["lac_id"] = df_wcel[["LAC", "CId"]].astype(str).apply("_".join, axis=1)
    df_wcel = df_wcel[["ID_WCEL", "lac_id", "name"]]

    df_wcel_source = df_wcel[WCEL_SOURCE]
    df_wcel_source.rename(columns={"name": "SOURCE_NAME"}, inplace=True)

    df_wcel_target = df_wcel[WCEL_TARGET]
    df_wcel_target.rename(columns={"name": "TARGET_NAME"}, inplace=True)

    # create final adjs
    df_adjs_final = pd.merge(df_adjs, df_wcel_source, on="ID_WCEL", how="left")
    df_adjs_final = pd.merge(
        df_adjs_final, df_wcel_target, on="lac_id", how="left"
    ).dropna()
    df_adjs_final.rename(
        columns={"ID_WCEL": "SOURCE_ID", "lac_id": "TARGET_LAC_ID"}, inplace=True
    )

    # process ADJI DATA
    df_adji = dfs["ADJI"]
    df_adji.columns = df_adji.columns.str.replace(r"[ ]", "", regex=True)

    df_adji["ID_WCEL"] = (
        df_adji[["RNC", "WBTS", "WCEL"]].astype(str).apply("_".join, axis=1)
    )
    df_adji["lac_id"] = (
        df_adji[["AdjiLAC", "AdjiCI"]].astype(str).apply("_".join, axis=1)
    )
    df_adji = df_adji[["ID_WCEL", "lac_id"]]

    df_adji_final = pd.merge(df_adji, df_wcel_source, on="ID_WCEL", how="left")
    df_adji_final = pd.merge(
        df_adji_final, df_wcel_target, on="lac_id", how="left"
    ).dropna()
    df_adji_final.rename(
        columns={"ID_WCEL": "SOURCE_ID", "lac_id": "TARGET_LAC_ID"}, inplace=True
    )

    # process ADJG DATA
    df_adjg = dfs["ADJG"]
    df_adjg.columns = df_adjg.columns.str.replace(r"[ ]", "", regex=True)

    df_adjg["ID_WCEL"] = (
        df_adjg[["RNC", "WBTS", "WCEL"]].astype(str).apply("_".join, axis=1)
    )
    df_adjg["lac_id"] = (
        df_adjg[["AdjgLAC", "AdjgCI"]].astype(str).apply("_".join, axis=1)
    )
    df_adjg = df_adjg[["ID_WCEL", "lac_id"]]

    df_adjg_final = pd.merge(df_adjg, df_wcel_source, on="ID_WCEL", how="left")
    df_adjg_final = pd.merge(
        df_adjg_final, df_bts_target, on="lac_id", how="left"
    ).dropna()
    df_adjg_final.rename(
        columns={"ID_WCEL": "SOURCE_ID", "lac_id": "TARGET_LAC_ID"}, inplace=True
    )

    # process ADJW DATA
    df_adjw = dfs["ADJW"]
    df_adjw.columns = df_adjw.columns.str.replace(r"[ ]", "", regex=True)

    df_adjw["ID_BTS"] = (
        df_adjw[["BSC", "BCF", "BTS"]].astype(str).apply("_".join, axis=1)
    )
    df_adjw["lac_id"] = df_adjw[["lac", "AdjwCId"]].astype(str).apply("_".join, axis=1)
    df_adjw = df_adjw[["ID_BTS", "lac_id"]]

    df_adjw_final = pd.merge(df_adjw, df_bts_source, on="ID_BTS", how="left")
    df_adjw_final = pd.merge(
        df_adjw_final, df_wcel_target, on="lac_id", how="left"
    ).dropna()
    df_adjw_final.rename(
        columns={"ID_BTS": "SOURCE_ID", "lac_id": "TARGET_LAC_ID"}, inplace=True
    )

    # save_dataframe(df_adjw_final, "ADJW")

    return [df_adjw_final, df_adjg_final, df_adji_final, df_adjs_final, df_adce_final]


def process_neighbors_data_to_excel(file_path: str):
    neighbors_dfs = process_neighbors_data(file_path)
    UtilsVars.neighbors_database = convert_dfs(
        neighbors_dfs, ["ADJW", "ADJG", "ADJI", "ADJS", "ADCE"]
    )