File size: 12,500 Bytes
939b332
 
 
 
 
 
bcc0fd9
 
 
939b332
bcc0fd9
 
939b332
bcc0fd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89c5d7
 
 
bcc0fd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89c5d7
 
 
bcc0fd9
 
 
 
 
 
 
 
 
81c766f
 
 
bcc0fd9
 
b89c5d7
 
bcc0fd9
 
 
 
 
 
 
 
 
 
 
 
 
b89c5d7
 
 
bcc0fd9
 
 
 
b89c5d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81c766f
b89c5d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcc0fd9
 
 
 
 
 
 
 
002ceab
9d69630
 
 
b290f2d
 
 
bcc0fd9
027f03b
 
 
 
 
 
d1de5db
 
26cb917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
027f03b
 
 
 
 
 
 
 
 
5113cfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcc0fd9
 
 
 
 
 
 
 
 
939b332
bcc0fd9
 
 
 
 
 
 
 
 
 
 
 
 
939b332
bcc0fd9
 
 
 
 
 
939b332
 
bcc0fd9
 
 
939b332
bcc0fd9
 
 
 
 
 
027f03b
 
 
 
 
5113cfc
 
 
 
 
bcc0fd9
 
 
939b332
 
 
 
 
 
 
 
 
 
50b11f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import io
import time

import pandas as pd
import streamlit as st

# @st.cache_data
# def convert_dfs(dfs: list[pd.DataFrame], sheet_names: list[str]) -> bytes:
#     # IMPORTANT: Cache the conversion to prevent computation on every rerun

#     # Create a BytesIO object
#     bytes_io = io.BytesIO()

#     # Write the dataframes to the BytesIO object
#     with pd.ExcelWriter(bytes_io, engine="xlsxwriter") as writer:
#         for df, sheet_name in zip(dfs, sheet_names):
#             df.to_excel(writer, sheet_name=sheet_name, index=True)

#     # Get the bytes data
#     bytes_data = bytes_io.getvalue()

#     # Close the BytesIO object
#     bytes_io.close()

#     return bytes_data


def get_formats(workbook):
    return {
        "green": workbook.add_format(
            {"bg_color": "#37CC73", "bold": True, "border": 1}
        ),
        "green_light": workbook.add_format(
            {"bg_color": "#87E0AB", "bold": True, "border": 1}
        ),
        "blue": workbook.add_format({"bg_color": "#1A64FF", "bold": True, "border": 1}),
        "blue_light": workbook.add_format(
            {"bg_color": "#00B0F0", "bold": True, "border": 1}
        ),
        "beurre": workbook.add_format(
            {"bg_color": "#FFE699", "bold": True, "border": 1}
        ),
        "orange": workbook.add_format(
            {"bg_color": "#F47F31", "bold": True, "border": 1}
        ),
        "purple5": workbook.add_format(
            {"bg_color": "#E03DCD", "bold": True, "border": 1}
        ),
        "purple6": workbook.add_format(
            {"bg_color": "#AE83F8", "bold": True, "border": 1}
        ),
        "gray": workbook.add_format({"bg_color": "#D9D9D9", "bold": True, "border": 1}),
        "red": workbook.add_format({"bg_color": "#FF0000", "bold": True, "border": 1}),
        "yellow": workbook.add_format(
            {"bg_color": "#FFFF00", "bold": True, "border": 1}
        ),
    }


def get_format_map_by_format_type(formats: dict, format_type: str) -> dict:
    if format_type == "GSM_Analysis":
        return {
            # "name": formats["blue"],
            "amrSegLoadDepTchRateLower": formats["beurre"],
            "amrSegLoadDepTchRateUpper": formats["beurre"],
            "btsSpLoadDepTchRateLower": formats["beurre"],
            "btsSpLoadDepTchRateUpper": formats["beurre"],
            "amrWbFrCodecModeSet": formats["beurre"],
            "dedicatedGPRScapacity": formats["beurre"],
            "defaultGPRScapacity": formats["beurre"],
            "number_trx_per_cell": formats["blue"],
            "number_trx_per_bcf": formats["blue"],
            "number_tch_per_cell": formats["blue"],
            "number_sd_per_cell": formats["blue"],
            "number_bcch_per_cell": formats["blue"],
            "number_ccch_per_cell": formats["blue"],
            "number_cbc_per_cell": formats["blue"],
            "number_total_channels_per_cell": formats["blue"],
            "number_signals_per_cell": formats["blue"],
            "hf_rate_coef": formats["purple5"],
            "GPRS": formats["purple5"],
            "TCH Actual HR%": formats["green"],
            "Offered Traffic BH": formats["green"],
            "Max_Traffic BH": formats["green"],
            "Avg_Traffic BH": formats["green"],
            "TCH UTILIZATION (@Max Traffic)": formats["red"],
            "Tch utilization comments": formats["orange"],
            "ErlabngB_value": formats["purple6"],
            "Target FR CHs": formats["purple6"],
            "Target HR CHs": formats["purple6"],
            "Target TCHs": formats["purple6"],
            "Target TRXs": formats["purple6"],
            "Number of required TRXs": formats["purple6"],
            "max_tch_call_blocking_bh": formats["yellow"],
            "avg_tch_call_blocking_bh": formats["yellow"],
            "number_of_days_with_tch_blocking_exceeded_bh": formats["yellow"],
            "tch_call_blocking_bh_comment": formats["orange"],
            "max_sdcch_real_blocking_bh": formats["yellow"],
            "avg_sdcch_real_blocking_bh": formats["yellow"],
            "number_of_days_with_sdcch_blocking_exceeded_bh": formats["yellow"],
            "sdcch_real_blocking_bh_comment": formats["orange"],
            "Average_cell_availability_bh": formats["yellow"],
            "number_of_days_exceeding_availability_threshold_bh": formats["yellow"],
            "availability_comment_bh": formats["orange"],
            "max_tch_abis_fail_bh": formats["yellow"],
            "avg_tch_abis_fail_bh": formats["yellow"],
            "number_of_days_with_tch_abis_fail_exceeded_bh": formats["yellow"],
            "tch_abis_fail_bh_comment": formats["orange"],
            "Average_cell_availability_daily": formats["green_light"],
            "number_of_days_exceeding_availability_threshold_daily": formats[
                "green_light"
            ],
            "availability_comment_daily": formats["orange"],
            "max_tch_abis_fail_daily": formats["green_light"],
            "avg_tch_abis_fail_daily": formats["green_light"],
            "number_of_days_with_tch_abis_fail_exceeded_daily": formats["green_light"],
            "tch_abis_fail_daily_comment": formats["orange"],
            "BH Congestion status": formats["gray"],
            "operational_comment": formats["gray"],
            "Final comment": formats["gray"],
            "Final comment summary": formats["gray"],
            # Operational Neighbours Distance Sheet
            "Source_ID_BTS": formats["blue"],
            "Source_name": formats["blue"],
            "Source_BH Congestion status": formats["blue"],
            "Source_Longitude": formats["blue"],
            "Source_Latitude": formats["blue"],
            "Neighbour_ID_BTS": formats["green_light"],
            "Neighbour_name": formats["green_light"],
            "Neighbour_operational_comment": formats["green_light"],
            "Neighbour_Longitude": formats["green_light"],
            "Neighbour_Latitude": formats["green_light"],
            "Distance_km": formats["beurre"],
        }
    elif format_type == "database":
        return {
            "code": formats["blue"],
            "Azimut": formats["green"],
            "Longitude": formats["green"],
            "Latitude": formats["green"],
            "Hauteur": formats["green"],
            "City": formats["green"],
            "Adresse": formats["green"],
            "Commune": formats["green"],
            "Cercle": formats["green"],
            "number_trx_per_cell": formats["blue_light"],
            "number_trx_per_bcf": formats["blue_light"],
            "number_trx_per_site": formats["blue_light"],
        }
    elif format_type == "LTE_Analysis":
        return {
            "code": formats["blue"],
            "code_sector": formats["blue"],
            "Region": formats["blue"],
            "site_config_band": formats["blue"],
            "Longitude": formats["blue"],
            "Latitude": formats["blue"],
            # "name_l800": formats["beurre"],
            # "name_l1800": formats["purple5"],
            # "name_l2300": formats["purple6"],
            # "name_l2600": formats["blue_light"],
            # "name_l1800s": formats["gray"],
            "prb_l800": formats["beurre"],
            "prb_l1800": formats["beurre"],
            "prb_l2300": formats["beurre"],
            "prb_l2600": formats["beurre"],
            "prb_l1800s": formats["beurre"],
            "prb_l800_2nd": formats["purple5"],
            "prb_l1800_2nd": formats["purple5"],
            "prb_l2300_2nd": formats["purple5"],
            "prb_l2600_2nd": formats["purple5"],
            "prb_l1800s_2nd": formats["purple5"],
            "act_ues_l800": formats["purple6"],
            "act_ues_l1800": formats["purple6"],
            "act_ues_l2300": formats["purple6"],
            "act_ues_l2600": formats["purple6"],
            "act_ues_l1800s": formats["purple6"],
            "dl_thp_l800": formats["blue_light"],
            "dl_thp_l1800": formats["blue_light"],
            "dl_thp_l2300": formats["blue_light"],
            "dl_thp_l2600": formats["blue_light"],
            "dl_thp_l1800s": formats["blue_light"],
            "ul_thp_l800": formats["gray"],
            "ul_thp_l1800": formats["gray"],
            "ul_thp_l2300": formats["gray"],
            "ul_thp_l2600": formats["gray"],
            "ul_thp_l1800s": formats["gray"],
            "num_congested_cells": formats["orange"],
            "num_cells": formats["orange"],
            "num_cell_with_kpi": formats["orange"],
            "num_down_or_no_kpi_cells": formats["orange"],
            "prb_diff_between_cells": formats["orange"],
            "load_balance_required": formats["orange"],
            "congestion_comment": formats["orange"],
            "final_comments": formats["green"],
        }

    elif format_type == "WCEL_capacity":
        return {
            "code": formats["blue"],
            "Region": formats["blue"],
            "name": formats["blue"],
            "Avg_availability": formats["blue_light"],
            "Avail_exceed_days": formats["blue_light"],
            "availability_comment": formats["blue_light"],
            "sum_traffic_cs": formats["beurre"],
            "sum_traffic_dl": formats["beurre"],
            "max_dl_throughput": formats["beurre"],
            "avg_dl_throughput": formats["beurre"],
            "max_users": formats["beurre"],
            "max_iub_frameloss": formats["purple5"],
            "iub_frameloss_exceed_days": formats["purple5"],
            "max_hsdpa_congestion_rate_iub": formats["purple5"],
            "hsdpa_iub_exceed_days": formats["purple5"],
            "max_rrc_fail_ac": formats["purple6"],
            "ac_fail_exceed_days": formats["purple6"],
            "max_rrc_fail_ac_ul": formats["purple6"],
            "ac_ul_fail_exceed_days": formats["purple6"],
            "max_rrc_fail_ac_dl": formats["purple6"],
            "ac_dl_fail_exceed_days": formats["purple6"],
            "max_rrc_fail_code": formats["purple6"],
            "code_fail_exceed_days": formats["purple6"],
            "max_rrc_fail_bts": formats["yellow"],
            "bts_fail_exceed_days": formats["yellow"],
            "tx_congestion_comments": formats["green"],
            "operational_comments": formats["green"],
            "fails_comments": formats["green"],
            "final_comments": formats["green"],
        }

    else:
        return {}  # No formatting if format_type not matched


def _apply_custom_formatting(
    writer, df: pd.DataFrame, sheet_name: str, format_type: str
):
    workbook = writer.book
    worksheet = writer.sheets[sheet_name]

    formats = get_formats(workbook)
    format_map = get_format_map_by_format_type(formats, format_type)

    for col_idx, col_name in enumerate(df.columns):
        fmt = format_map.get(col_name)
        if fmt:
            worksheet.write(0, col_idx + 1, col_name, fmt)


def _write_to_excel(
    dfs: list[pd.DataFrame], sheet_names: list[str], index=True, format_type: str = None
) -> bytes:
    bytes_io = io.BytesIO()
    with pd.ExcelWriter(bytes_io, engine="xlsxwriter") as writer:
        for df, name in zip(dfs, sheet_names):
            # df.index.name = "index"
            df.to_excel(writer, sheet_name=name, index=index)
            if format_type:
                _apply_custom_formatting(writer, df, name, format_type)
    return bytes_io.getvalue()


@st.cache_data
def convert_dfs(dfs: list[pd.DataFrame], sheet_names: list[str]) -> bytes:
    return _write_to_excel(dfs, sheet_names, index=True)


@st.cache_data
def convert_gsm_dfs(dfs, sheet_names) -> bytes:
    return _write_to_excel(dfs, sheet_names, index=True, format_type="GSM_Analysis")


@st.cache_data
def convert_lte_analysis_dfs(dfs, sheet_names) -> bytes:
    return _write_to_excel(dfs, sheet_names, index=True, format_type="LTE_Analysis")


@st.cache_data
def convert_wcel_capacity_dfs(dfs, sheet_names) -> bytes:
    return _write_to_excel(dfs, sheet_names, index=True, format_type="WCEL_capacity")


@st.cache_data
def convert_database_dfs(dfs, sheet_names) -> bytes:
    return _write_to_excel(dfs, sheet_names, index=True, format_type="database")


def save_dataframe(df: pd.DataFrame, sheet_name: str):
    """
    Save the dataframe to a csv file.

    Args:
        df (pd.DataFrame): The dataframe to save.
        sheet_name (str): The name of the sheet.
    """
    df.to_csv(f"data2/{sheet_name}_{time.time()}.csv", index=False, encoding="latin1")