db_query / process_kpi /process_gsm_capacity.py
DavMelchi's picture
GSM CAPACITY initial commit
d269960
raw
history blame
12.8 kB
import numpy as np
import pandas as pd
from queries.process_gsm import combined_gsm_database
from utils.check_sheet_exist import execute_checks_sheets_exist
from utils.convert_to_excel import convert_dfs, save_dataframe
from utils.kpi_analysis_utils import (
GsmAnalysis,
create_daily_date,
create_dfs_per_kpi,
create_hourly_date,
kpi_naming_cleaning,
)
class GsmCapacity:
final_results = None
GSM_COLUMNS = [
"ID_BTS",
"site_name",
"name",
"BSC",
"BCF",
"BTS",
"code",
"Region",
"adminState",
"frequencyBandInUse",
"amrSegLoadDepTchRateLower",
"amrSegLoadDepTchRateUpper",
"dedicatedGPRScapacity",
"defaultGPRScapacity",
"cellId",
"band",
"site_config_band",
"trxRfPower",
"BCCH",
"number_trx_per_cell",
"number_trx_per_bcf",
"TRX_TCH",
"MAL_TCH",
]
TRX_COLUMNS = [
"ID_BTS",
"number_tch_per_cell",
"number_sd_per_cell",
"number_bcch_per_cell",
"number_ccch_per_cell",
"number_cbc_per_cell",
"number_total_channels_per_cell",
"number_signals_per_cell",
]
KPI_COLUMNS = [
"date",
"BTS_name",
"TCH_availability_ratio",
"2G_Carried_Traffic",
"TCH_call_blocking",
"TCH_ABIS_FAIL_CALL_c001084",
"SDCCH_real_blocking",
]
BH_COLUMNS_FOR_CAPACITY = [
"Max_Traffic BH",
"Avg_Traffic BH",
"Max_tch_call_blocking BH",
"Avg_tch_call_blocking BH",
"number_of_days_with_tch_blocking_exceeded",
"Max_sdcch_real_blocking BH",
"Avg_sdcch_real_blocking BH",
"number_of_days_with_sdcch_blocking_exceeded",
]
def bh_tch_call_blocking_analysis(
df: pd.DataFrame,
number_of_kpi_days: int,
tch_blocking_threshold: int,
number_of_threshold_days: int,
) -> pd.DataFrame:
result_df = df.copy()
last_days_df = result_df.iloc[:, -number_of_kpi_days:]
# last_days_df = last_days_df.fillna(0)
result_df["Avg_tch_call_blocking BH"] = last_days_df.mean(axis=1).round(2)
result_df["Max_tch_call_blocking BH"] = last_days_df.max(axis=1)
# Count the number of days above threshold
result_df["number_of_days_with_tch_blocking_exceeded"] = last_days_df.apply(
lambda row: sum(1 for x in row if x >= tch_blocking_threshold), axis=1
)
return result_df
def bh_sdcch_call_blocking_analysis(
df: pd.DataFrame,
number_of_kpi_days: int,
sdcch_blocking_threshold: int,
number_of_threshold_days: int,
) -> pd.DataFrame:
result_df = df.copy()
last_days_df = result_df.iloc[:, -number_of_kpi_days:]
# last_days_df = last_days_df.fillna(0)
result_df["Avg_sdcch_real_blocking BH"] = last_days_df.mean(axis=1).round(2)
result_df["Max_sdcch_real_blocking BH"] = last_days_df.max(axis=1)
# Count the number of days above threshold
result_df["number_of_days_with_sdcch_blocking_exceeded"] = last_days_df.apply(
lambda row: sum(1 for x in row if x >= sdcch_blocking_threshold), axis=1
)
return result_df
def bh_traffic_analysis(
df: pd.DataFrame,
number_of_kpi_days: int,
) -> pd.DataFrame:
result_df = df.copy()
last_days_df = result_df.iloc[:, -number_of_kpi_days:]
# last_days_df = last_days_df.fillna(0)
result_df["Avg_Traffic BH"] = last_days_df.mean(axis=1).round(2)
result_df["Max_Traffic BH"] = last_days_df.max(axis=1)
return result_df
def bh_dfs_per_kpi(
df: pd.DataFrame,
number_of_kpi_days: int = 7,
tch_blocking_threshold: int = 0.50,
sdcch_blocking_threshold: int = 0.50,
number_of_threshold_days: int = 3,
) -> pd.DataFrame:
"""
Create pivoted DataFrames for each KPI and perform analysis.
Args:
df: DataFrame containing KPI data
number_of_kpi_days: Number of days to analyze
threshold: Utilization threshold percentage for flagging
number_of_threshold_days: Minimum days above threshold to flag for upgrade
Returns:
DataFrame with combined analysis results
"""
pivoted_kpi_dfs = {}
pivoted_kpi_dfs = create_dfs_per_kpi(
df=df,
pivot_date_column="date",
pivot_name_column="BTS_name",
kpi_columns_from=2,
)
tch_call_blocking_df: pd.DataFrame = pivoted_kpi_dfs["TCH_call_blocking"]
sdcch_real_blocking_df: pd.DataFrame = pivoted_kpi_dfs["SDCCH_real_blocking"]
Carried_Traffic_df: pd.DataFrame = pivoted_kpi_dfs["2G_Carried_Traffic"]
tch_availability_ratio_df: pd.DataFrame = pivoted_kpi_dfs["TCH_availability_ratio"]
# ANALISYS
tch_call_blocking_df = bh_tch_call_blocking_analysis(
df=tch_call_blocking_df,
number_of_kpi_days=number_of_kpi_days,
tch_blocking_threshold=tch_blocking_threshold,
number_of_threshold_days=number_of_threshold_days,
)
sdcch_real_blocking_df = bh_sdcch_call_blocking_analysis(
df=sdcch_real_blocking_df,
number_of_kpi_days=number_of_kpi_days,
sdcch_blocking_threshold=sdcch_blocking_threshold,
number_of_threshold_days=number_of_threshold_days,
)
Carried_Traffic_df = bh_traffic_analysis(
df=Carried_Traffic_df,
number_of_kpi_days=number_of_kpi_days,
)
# Carried_Traffic_df["Max_Traffic BH"] = Carried_Traffic_df.max(axis=1)
# Carried_Traffic_df["Avg_Traffic BH"] = Carried_Traffic_df.mean(axis=1)
bh_kpi_df = pd.concat(
[
tch_availability_ratio_df,
Carried_Traffic_df,
tch_call_blocking_df,
sdcch_real_blocking_df,
],
axis=1,
)
# print(Carried_Traffic_df)
return bh_kpi_df
def analyse_bh_data(
bh_report_path: str,
number_of_kpi_days: int,
tch_blocking_threshold: int,
sdcch_blocking_threshold: int,
number_of_threshold_days: int,
) -> pd.DataFrame:
df = pd.read_csv(bh_report_path, delimiter=";")
df = kpi_naming_cleaning(df)
df = create_hourly_date(df)
df = df[KPI_COLUMNS]
df = bh_dfs_per_kpi(
df=df,
number_of_kpi_days=number_of_kpi_days,
tch_blocking_threshold=tch_blocking_threshold,
sdcch_blocking_threshold=sdcch_blocking_threshold,
number_of_threshold_days=number_of_threshold_days,
)
bh_df_for_capacity = df.copy()
bh_df_for_capacity = bh_df_for_capacity[BH_COLUMNS_FOR_CAPACITY]
bh_df_for_capacity = bh_df_for_capacity.reset_index()
# If columns have multiple levels (MultiIndex), flatten them
if isinstance(bh_df_for_capacity.columns, pd.MultiIndex):
bh_df_for_capacity.columns = [
"_".join([str(el) for el in col if el])
for col in bh_df_for_capacity.columns.values
]
# bh_df_for_capacity = bh_df_for_capacity.reset_index()
# rename Bts_name to name
bh_df_for_capacity = bh_df_for_capacity.rename(columns={"BTS_name": "name"})
return [bh_df_for_capacity, df]
def daily_dfs_per_kpi(
df: pd.DataFrame,
number_of_kpi_days: int = 7,
availability_threshold: int = 95,
number_of_threshold_days: int = 3,
tch_abis_fails_threshold: int = 10,
) -> pd.DataFrame:
"""
Create pivoted DataFrames for each KPI and perform analysis.
Args:
df: DataFrame containing KPI data
number_of_kpi_days: Number of days to analyze
threshold: Utilization threshold percentage for flagging
number_of_threshold_days: Minimum days above threshold to flag for upgrade
Returns:
DataFrame with combined analysis results
"""
pivoted_kpi_dfs = {}
pivoted_kpi_dfs = create_dfs_per_kpi(
df=df,
pivot_date_column="date",
pivot_name_column="BTS_name",
kpi_columns_from=2,
)
tch_call_blocking_df: pd.DataFrame = pivoted_kpi_dfs["TCH_call_blocking"]
sdcch_real_blocking_df: pd.DataFrame = pivoted_kpi_dfs["SDCCH_real_blocking"]
Carried_Traffic_df: pd.DataFrame = pivoted_kpi_dfs["2G_Carried_Traffic"]
tch_availability_ratio_df: pd.DataFrame = pivoted_kpi_dfs["TCH_availability_ratio"]
tch_abis_fails_df: pd.DataFrame = pivoted_kpi_dfs["TCH_ABIS_FAIL_CALL_c001084"]
def analyse_daily_data(
daily_report_path: str,
number_of_kpi_days: int,
tch_abis_fails_threshold: int,
availability_threshold: int,
number_of_threshold_days: int,
) -> pd.DataFrame:
df = pd.read_csv(daily_report_path, delimiter=";")
df = kpi_naming_cleaning(df)
df = create_daily_date(df)
df = df[KPI_COLUMNS]
df = daily_dfs_per_kpi(
df=df,
number_of_kpi_days=number_of_kpi_days,
availability_threshold=availability_threshold,
tch_abis_fails_threshold=tch_abis_fails_threshold,
number_of_threshold_days=number_of_threshold_days,
)
# print(df)
def get_gsm_databases(dump_path: str) -> pd.DataFrame:
dfs = combined_gsm_database(dump_path)
bts_df: pd.DataFrame = dfs[0]
trx_df: pd.DataFrame = dfs[2]
# Clean GSM df
bts_df = bts_df[GSM_COLUMNS]
trx_df = trx_df[TRX_COLUMNS]
# Remove duplicate in TRX df
trx_df = trx_df.drop_duplicates(subset=["ID_BTS"])
gsm_df = pd.merge(bts_df, trx_df, on="ID_BTS", how="left")
# add hf_rate_coef
gsm_df["hf_rate_coef"] = gsm_df["amrSegLoadDepTchRateLower"].map(
GsmAnalysis.hf_rate_coef
)
# Add "GPRS" colomn equal to (dedicatedGPRScapacity * number_tch_per_cell)/100
gsm_df["GPRS"] = (
gsm_df["dedicatedGPRScapacity"] * gsm_df["number_tch_per_cell"]
) / 100
# "TCH Actual HR%" equal to "number of TCH" multiplyed by "Coef HF rate"
gsm_df["TCH Actual HR%"] = gsm_df["number_tch_per_cell"] * gsm_df["hf_rate_coef"]
# Remove empty rows
gsm_df = gsm_df.dropna(subset=["TCH Actual HR%"])
# Get "Offered Traffic BH" by mapping approximate "TCH Actual HR%" to 2G analysis_utility "erlangB" dict
gsm_df["Offered Traffic BH"] = gsm_df["TCH Actual HR%"].apply(
lambda x: GsmAnalysis.erlangB_table.get(int(x), 0)
)
# save_dataframe(gsm_df, "GSM")
return gsm_df
def analyze_gsm_data(
dump_path: str,
daily_report_path: str,
bh_report_path: str,
number_of_kpi_days: int,
number_of_threshold_days: int,
availability_threshold: int,
tch_abis_fails_threshold: int,
sddch_blocking_threshold: float,
tch_blocking_threshold: float,
):
# print("Analyzing data...")
# print(f"Number of days: {number_of_kpi_days}")
# print(f"availability_threshold: {availability_threshold}")
analyse_daily_data(
daily_report_path=daily_report_path,
number_of_kpi_days=number_of_kpi_days,
availability_threshold=availability_threshold,
tch_abis_fails_threshold=tch_abis_fails_threshold,
number_of_threshold_days=number_of_threshold_days,
)
gsm_database_df: pd.DataFrame = get_gsm_databases(dump_path)
bh_kpi_dfs = analyse_bh_data(
bh_report_path=bh_report_path,
number_of_kpi_days=number_of_kpi_days,
tch_blocking_threshold=tch_blocking_threshold,
sdcch_blocking_threshold=sddch_blocking_threshold,
number_of_threshold_days=number_of_threshold_days,
)
bh_kpi_df = bh_kpi_dfs[0]
bh_kpi_full_df = bh_kpi_dfs[1]
gsm_analysis_df = gsm_database_df.merge(bh_kpi_df, on="name", how="left")
# "TCH UTILIZATION (@Max Traffic)" equal to "(Max_Trafic" divided by "Offered Traffic BH)*100"
gsm_analysis_df["TCH UTILIZATION (@Max Traffic)"] = (
gsm_analysis_df["Max_Traffic BH"] / gsm_analysis_df["Offered Traffic BH"]
) * 100
# Add "ERLANGB value" =MAX TRAFFIC/(1-(MAX TCH call blocking/200))
gsm_analysis_df["ErlabngB_value"] = gsm_analysis_df["Max_Traffic BH"] / (
1 - (gsm_analysis_df["Max_tch_call_blocking BH"] / 200)
)
# - Get "Target FR CHs" by mapping "ERLANG value" to 2G analysis_utility "erlangB" dict
gsm_analysis_df["Target FR CHs"] = gsm_analysis_df["ErlabngB_value"].apply(
lambda x: GsmAnalysis.erlangB_table.get(int(x) if pd.notnull(x) else 0, 0)
)
# "Target HR CHs" equal to "Target FR CHs" * 2
gsm_analysis_df["Target HR CHs"] = gsm_analysis_df["Target FR CHs"] * 2
# - Target TCHs equal to Target HR CHs + Signal + GPRS + SDCCH
gsm_analysis_df["Target TCHs"] = (
gsm_analysis_df["Target HR CHs"]
+ gsm_analysis_df["number_signals_per_cell"]
+ gsm_analysis_df["GPRS"]
+ gsm_analysis_df["number_sd_per_cell"]
)
# "Target TRXs" equal to roundup(Target TCHs/8)
gsm_analysis_df["Target TRXs"] = np.ceil(
gsm_analysis_df["Target TCHs"] / 8
) # df["Target TCHs"] / 8
# "Numberof required TRXs" equal to difference between "Target TRXs" and "number_trx_per_cell"
gsm_analysis_df["Numberof required TRXs"] = (
gsm_analysis_df["Target TRXs"] - gsm_analysis_df["number_trx_per_cell"]
)
return [gsm_analysis_df, bh_kpi_full_df]