Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
class EarlyStopping: | |
"""Early stops the training if validation loss doesn't improve after a given patience.""" | |
def __init__(self, patience=1, verbose=False, delta=0): | |
""" | |
Args: | |
patience (int): How long to wait after last time validation loss improved. | |
Default: 7 | |
verbose (bool): If True, prints a message for each validation loss improvement. | |
Default: False | |
delta (float): Minimum change in the monitored quantity to qualify as an improvement. | |
Default: 0 | |
""" | |
self.patience = patience | |
self.verbose = verbose | |
self.counter = 0 | |
self.best_score = None | |
self.early_stop = False | |
self.score_max = -np.Inf | |
self.delta = delta | |
def __call__(self, score, model): | |
if self.best_score is None: | |
self.best_score = score | |
self.save_checkpoint(score, model) | |
elif score < self.best_score - self.delta: | |
self.counter += 1 | |
print(f'EarlyStopping counter: {self.counter} out of {self.patience}') | |
if self.counter >= self.patience: | |
self.early_stop = True | |
else: | |
self.best_score = score | |
self.save_checkpoint(score, model) | |
self.counter = 0 | |
def save_checkpoint(self, score, model): | |
'''Saves model when validation loss decrease.''' | |
if self.verbose: | |
print(f'Validation accuracy increased ({self.score_max:.6f} --> {score:.6f}). Saving model ...') | |
model.save_networks('best') | |
self.score_max = score |