Spaces:
Sleeping
Sleeping
# This code is built from the PyTorch examples repository: https://github.com/pytorch/vision/tree/master/torchvision/models. | |
# Copyright (c) 2017 Torch Contributors. | |
# The Pytorch examples are available under the BSD 3-Clause License. | |
# | |
# ========================================================================================== | |
# | |
# Adobe’s modifications are Copyright 2019 Adobe. All rights reserved. | |
# Adobe’s modifications are licensed under the Creative Commons Attribution-NonCommercial-ShareAlike | |
# 4.0 International Public License (CC-NC-SA-4.0). To view a copy of the license, visit | |
# https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode. | |
# | |
# ========================================================================================== | |
# | |
# BSD-3 License | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# | |
# * Redistributions of source code must retain the above copyright notice, this | |
# list of conditions and the following disclaimer. | |
# | |
# * Redistributions in binary form must reproduce the above copyright notice, | |
# this list of conditions and the following disclaimer in the documentation | |
# and/or other materials provided with the distribution. | |
# | |
# * Neither the name of the copyright holder nor the names of its | |
# contributors may be used to endorse or promote products derived from | |
# this software without specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | |
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
import torch.nn as nn | |
import torch.utils.model_zoo as model_zoo | |
from .lpf import * | |
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', | |
'resnet152', 'resnext50_32x4d', 'resnext101_32x8d'] | |
# model_urls = { | |
# 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', | |
# 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', | |
# 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', | |
# 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', | |
# 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', | |
# } | |
def conv3x3(in_planes, out_planes, stride=1, groups=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=1, groups=groups, bias=False) | |
def conv1x1(in_planes, out_planes, stride=1): | |
"""1x1 convolution""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, norm_layer=None, filter_size=1): | |
super(BasicBlock, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
if groups != 1: | |
raise ValueError('BasicBlock only supports groups=1') | |
# Both self.conv1 and self.downsample layers downsample the input when stride != 1 | |
self.conv1 = conv3x3(inplanes, planes) | |
self.bn1 = norm_layer(planes) | |
self.relu = nn.ReLU(inplace=True) | |
if(stride==1): | |
self.conv2 = conv3x3(planes,planes) | |
else: | |
self.conv2 = nn.Sequential(Downsample(filt_size=filter_size, stride=stride, channels=planes), | |
conv3x3(planes, planes),) | |
self.bn2 = norm_layer(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, norm_layer=None, filter_size=1): | |
super(Bottleneck, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
# Both self.conv2 and self.downsample layers downsample the input when stride != 1 | |
self.conv1 = conv1x1(inplanes, planes) | |
self.bn1 = norm_layer(planes) | |
self.conv2 = conv3x3(planes, planes, groups) # stride moved | |
self.bn2 = norm_layer(planes) | |
if(stride==1): | |
self.conv3 = conv1x1(planes, planes * self.expansion) | |
else: | |
self.conv3 = nn.Sequential(Downsample(filt_size=filter_size, stride=stride, channels=planes), | |
conv1x1(planes, planes * self.expansion)) | |
self.bn3 = norm_layer(planes * self.expansion) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu(out) | |
return out | |
class ResNet(nn.Module): | |
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, | |
groups=1, width_per_group=64, norm_layer=None, filter_size=1, pool_only=True): | |
super(ResNet, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
planes = [int(width_per_group * groups * 2 ** i) for i in range(4)] | |
self.inplanes = planes[0] | |
if(pool_only): | |
self.conv1 = nn.Conv2d(3, planes[0], kernel_size=7, stride=2, padding=3, bias=False) | |
else: | |
self.conv1 = nn.Conv2d(3, planes[0], kernel_size=7, stride=1, padding=3, bias=False) | |
self.bn1 = norm_layer(planes[0]) | |
self.relu = nn.ReLU(inplace=True) | |
if(pool_only): | |
self.maxpool = nn.Sequential(*[nn.MaxPool2d(kernel_size=2, stride=1), | |
Downsample(filt_size=filter_size, stride=2, channels=planes[0])]) | |
else: | |
self.maxpool = nn.Sequential(*[Downsample(filt_size=filter_size, stride=2, channels=planes[0]), | |
nn.MaxPool2d(kernel_size=2, stride=1), | |
Downsample(filt_size=filter_size, stride=2, channels=planes[0])]) | |
self.layer1 = self._make_layer(block, planes[0], layers[0], groups=groups, norm_layer=norm_layer) | |
self.layer2 = self._make_layer(block, planes[1], layers[1], stride=2, groups=groups, norm_layer=norm_layer, filter_size=filter_size) | |
self.layer3 = self._make_layer(block, planes[2], layers[2], stride=2, groups=groups, norm_layer=norm_layer, filter_size=filter_size) | |
self.layer4 = self._make_layer(block, planes[3], layers[3], stride=2, groups=groups, norm_layer=norm_layer, filter_size=filter_size) | |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.fc = nn.Linear(planes[3] * block.expansion, num_classes) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
if(m.in_channels!=m.out_channels or m.out_channels!=m.groups or m.bias is not None): | |
# don't want to reinitialize downsample layers, code assuming normal conv layers will not have these characteristics | |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
else: | |
print('Not initializing') | |
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
# Zero-initialize the last BN in each residual branch, | |
# so that the residual branch starts with zeros, and each residual block behaves like an identity. | |
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 | |
if zero_init_residual: | |
for m in self.modules(): | |
if isinstance(m, Bottleneck): | |
nn.init.constant_(m.bn3.weight, 0) | |
elif isinstance(m, BasicBlock): | |
nn.init.constant_(m.bn2.weight, 0) | |
def _make_layer(self, block, planes, blocks, stride=1, groups=1, norm_layer=None, filter_size=1): | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
# downsample = nn.Sequential( | |
# conv1x1(self.inplanes, planes * block.expansion, stride, filter_size=filter_size), | |
# norm_layer(planes * block.expansion), | |
# ) | |
downsample = [Downsample(filt_size=filter_size, stride=stride, channels=self.inplanes),] if(stride !=1) else [] | |
downsample += [conv1x1(self.inplanes, planes * block.expansion, 1), | |
norm_layer(planes * block.expansion)] | |
# print(downsample) | |
downsample = nn.Sequential(*downsample) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample, groups, norm_layer, filter_size=filter_size)) | |
self.inplanes = planes * block.expansion | |
for _ in range(1, blocks): | |
layers.append(block(self.inplanes, planes, groups=groups, norm_layer=norm_layer, filter_size=filter_size)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.avgpool(x) | |
x = x.view(x.size(0), -1) | |
x = self.fc(x) | |
return x | |
def resnet18(pretrained=False, filter_size=1, pool_only=True, **kwargs): | |
"""Constructs a ResNet-18 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(BasicBlock, [2, 2, 2, 2], filter_size=filter_size, pool_only=pool_only, **kwargs) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) | |
return model | |
def resnet34(pretrained=False, filter_size=1, pool_only=True, **kwargs): | |
"""Constructs a ResNet-34 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(BasicBlock, [3, 4, 6, 3], filter_size=filter_size, pool_only=pool_only, **kwargs) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) | |
return model | |
def resnet50(pretrained=False, filter_size=1, pool_only=True, **kwargs): | |
"""Constructs a ResNet-50 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 4, 6, 3], filter_size=filter_size, pool_only=pool_only, **kwargs) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) | |
return model | |
def resnet101(pretrained=False, filter_size=1, pool_only=True, **kwargs): | |
"""Constructs a ResNet-101 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 4, 23, 3], filter_size=filter_size, pool_only=pool_only, **kwargs) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) | |
return model | |
def resnet152(pretrained=False, filter_size=1, pool_only=True, **kwargs): | |
"""Constructs a ResNet-152 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 8, 36, 3], filter_size=filter_size, pool_only=pool_only, **kwargs) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) | |
return model | |
def resnext50_32x4d(pretrained=False, filter_size=1, pool_only=True, **kwargs): | |
model = ResNet(Bottleneck, [3, 4, 6, 3], groups=4, width_per_group=32, filter_size=filter_size, pool_only=pool_only, **kwargs) | |
# if pretrained: | |
# model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) | |
return model | |
def resnext101_32x8d(pretrained=False, filter_size=1, pool_only=True, **kwargs): | |
model = ResNet(Bottleneck, [3, 4, 23, 3], groups=8, width_per_group=32, filter_size=filter_size, pool_only=pool_only, **kwargs) | |
# if pretrained: | |
# model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) | |
return model | |