David310's picture
add project files
55478d8
import argparse
from ast import arg
import os
import csv
import torch
import torchvision.transforms as transforms
import torch.utils.data
import numpy as np
from sklearn.metrics import average_precision_score, precision_recall_curve, accuracy_score
from torch.utils.data import Dataset
import sys
from models import get_model
from PIL import Image
import pickle
from tqdm import tqdm
from io import BytesIO
from copy import deepcopy
from dataset_paths import DATASET_PATHS
import random
import shutil
from scipy.ndimage.filters import gaussian_filter
SEED = 0
def set_seed():
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
MEAN = {
"imagenet":[0.485, 0.456, 0.406],
"clip":[0.48145466, 0.4578275, 0.40821073]
}
STD = {
"imagenet":[0.229, 0.224, 0.225],
"clip":[0.26862954, 0.26130258, 0.27577711]
}
def find_best_threshold(y_true, y_pred):
"We assume first half is real 0, and the second half is fake 1"
N = y_true.shape[0]
if y_pred[0:N//2].max() <= y_pred[N//2:N].min(): # perfectly separable case
return (y_pred[0:N//2].max() + y_pred[N//2:N].min()) / 2
best_acc = 0
best_thres = 0
for thres in y_pred:
temp = deepcopy(y_pred)
temp[temp>=thres] = 1
temp[temp<thres] = 0
acc = (temp == y_true).sum() / N
if acc >= best_acc:
best_thres = thres
best_acc = acc
return best_thres
def png2jpg(img, quality):
out = BytesIO()
img.save(out, format='jpeg', quality=quality) # ranging from 0-95, 75 is default
img = Image.open(out)
# load from memory before ByteIO closes
img = np.array(img)
out.close()
return Image.fromarray(img)
def gaussian_blur(img, sigma):
img = np.array(img)
gaussian_filter(img[:,:,0], output=img[:,:,0], sigma=sigma)
gaussian_filter(img[:,:,1], output=img[:,:,1], sigma=sigma)
gaussian_filter(img[:,:,2], output=img[:,:,2], sigma=sigma)
return Image.fromarray(img)
def calculate_acc(y_true, y_pred, thres):
r_acc = accuracy_score(y_true[y_true==0], y_pred[y_true==0] > thres)
f_acc = accuracy_score(y_true[y_true==1], y_pred[y_true==1] > thres)
acc = accuracy_score(y_true, y_pred > thres)
return r_acc, f_acc, acc
def validate(model, loader, find_thres=False):
with torch.no_grad():
y_true, y_pred = [], []
print ("Length of dataset: %d" %(len(loader)))
for img, label in loader:
in_tens = img.cuda()
y_pred.extend(model(in_tens).sigmoid().flatten().tolist())
y_true.extend(label.flatten().tolist())
y_true, y_pred = np.array(y_true), np.array(y_pred)
# ================== save this if you want to plot the curves =========== #
# torch.save( torch.stack( [torch.tensor(y_true), torch.tensor(y_pred)] ), 'baseline_predication_for_pr_roc_curve.pth' )
# exit()
# =================================================================== #
# Get AP
ap = average_precision_score(y_true, y_pred)
# Acc based on 0.5
r_acc0, f_acc0, acc0 = calculate_acc(y_true, y_pred, 0.5)
if not find_thres:
return ap, r_acc0, f_acc0, acc0
# Acc based on the best thres
best_thres = find_best_threshold(y_true, y_pred)
r_acc1, f_acc1, acc1 = calculate_acc(y_true, y_pred, best_thres)
return ap, r_acc0, f_acc0, acc0, r_acc1, f_acc1, acc1, best_thres
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
def recursively_read(rootdir, must_contain, exts=["png", "jpg", "JPEG", "jpeg", "bmp"]):
out = []
for r, d, f in os.walk(rootdir):
for file in f:
if (file.split('.')[1] in exts) and (must_contain in os.path.join(r, file)):
out.append(os.path.join(r, file))
return out
def get_list(path, must_contain=''):
if ".pickle" in path:
with open(path, 'rb') as f:
image_list = pickle.load(f)
image_list = [ item for item in image_list if must_contain in item ]
else:
image_list = recursively_read(path, must_contain)
return image_list
class RealFakeDataset(Dataset):
def __init__(self, real_path,
fake_path,
data_mode,
max_sample,
arch,
jpeg_quality=None,
gaussian_sigma=None):
assert data_mode in ["wang2020", "ours"]
self.jpeg_quality = jpeg_quality
self.gaussian_sigma = gaussian_sigma
# = = = = = = data path = = = = = = = = = #
if type(real_path) == str and type(fake_path) == str:
real_list, fake_list = self.read_path(real_path, fake_path, data_mode, max_sample)
else:
real_list = []
fake_list = []
for real_p, fake_p in zip(real_path, fake_path):
real_l, fake_l = self.read_path(real_p, fake_p, data_mode, max_sample)
real_list += real_l
fake_list += fake_l
self.total_list = real_list + fake_list
# = = = = = = label = = = = = = = = = #
self.labels_dict = {}
for i in real_list:
self.labels_dict[i] = 0
for i in fake_list:
self.labels_dict[i] = 1
stat_from = "imagenet" if arch.lower().startswith("imagenet") else "clip"
self.transform = transforms.Compose([
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize( mean=MEAN[stat_from], std=STD[stat_from] ),
])
def read_path(self, real_path, fake_path, data_mode, max_sample):
if data_mode == 'wang2020':
real_list = get_list(real_path, must_contain='0_real')
fake_list = get_list(fake_path, must_contain='1_fake')
else:
real_list = get_list(real_path)
fake_list = get_list(fake_path)
if max_sample is not None:
if (max_sample > len(real_list)) or (max_sample > len(fake_list)):
max_sample = 100
print("not enough images, max_sample falling to 100")
random.shuffle(real_list)
random.shuffle(fake_list)
real_list = real_list[0:max_sample]
fake_list = fake_list[0:max_sample]
assert len(real_list) == len(fake_list)
return real_list, fake_list
def __len__(self):
return len(self.total_list)
def __getitem__(self, idx):
img_path = self.total_list[idx]
label = self.labels_dict[img_path]
img = Image.open(img_path).convert("RGB")
if self.gaussian_sigma is not None:
img = gaussian_blur(img, self.gaussian_sigma)
if self.jpeg_quality is not None:
img = png2jpg(img, self.jpeg_quality)
img = self.transform(img)
return img, label
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--real_path', type=str, default=None, help='dir name or a pickle')
parser.add_argument('--fake_path', type=str, default=None, help='dir name or a pickle')
parser.add_argument('--data_mode', type=str, default=None, help='wang2020 or ours')
parser.add_argument('--max_sample', type=int, default=1000, help='only check this number of images for both fake/real')
parser.add_argument('--arch', type=str, default='res50')
parser.add_argument('--ckpt', type=str, default='./pretrained_weights/fc_weights.pth')
parser.add_argument('--result_folder', type=str, default='result', help='')
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--jpeg_quality', type=int, default=None, help="100, 90, 80, ... 30. Used to test robustness of our model. Not apply if None")
parser.add_argument('--gaussian_sigma', type=int, default=None, help="0,1,2,3,4. Used to test robustness of our model. Not apply if None")
opt = parser.parse_args()
if os.path.exists(opt.result_folder):
shutil.rmtree(opt.result_folder)
os.makedirs(opt.result_folder)
model = get_model(opt.arch)
state_dict = torch.load(opt.ckpt, map_location='cpu')
model.fc.load_state_dict(state_dict)
print ("Model loaded..")
model.eval()
model.cuda()
if (opt.real_path == None) or (opt.fake_path == None) or (opt.data_mode == None):
dataset_paths = DATASET_PATHS
else:
dataset_paths = [ dict(real_path=opt.real_path, fake_path=opt.fake_path, data_mode=opt.data_mode) ]
for dataset_path in (dataset_paths):
set_seed()
dataset = RealFakeDataset( dataset_path['real_path'],
dataset_path['fake_path'],
dataset_path['data_mode'],
opt.max_sample,
opt.arch,
jpeg_quality=opt.jpeg_quality,
gaussian_sigma=opt.gaussian_sigma,
)
loader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=False, num_workers=4)
ap, r_acc0, f_acc0, acc0, r_acc1, f_acc1, acc1, best_thres = validate(model, loader, find_thres=True)
with open( os.path.join(opt.result_folder,'ap.txt'), 'a') as f:
f.write(dataset_path['key']+': ' + str(round(ap*100, 2))+'\n' )
with open( os.path.join(opt.result_folder,'acc0.txt'), 'a') as f:
f.write(dataset_path['key']+': ' + str(round(r_acc0*100, 2))+' '+str(round(f_acc0*100, 2))+' '+str(round(acc0*100, 2))+'\n' )