gemini-image / app.py
Deadmon's picture
Update app.py
10a152a verified
raw
history blame
5.62 kB
import base64
import os
import mimetypes
from google import genai
from google.genai import types
import gradio as gr
import io
from PIL import Image
import tempfile
def save_binary_file(file_name, data):
f = open(file_name, "wb")
f.write(data)
f.close()
def generate_image(prompt, image=None, output_filename="generated_image"):
# Initialize client with the API key
client = genai.Client(
api_key="AIzaSyAQcy3LfrkMy6DqS_8MqftAXu1Bx_ov_E8",
)
model = "gemini-2.0-flash-exp-image-generation"
parts = [types.Part.from_text(text=prompt)]
# If an image is provided, add it to the content
if image:
# Convert PIL Image to bytes
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format="PNG")
img_bytes = img_byte_arr.getvalue()
# Add the image as a Part with inline_data
parts.append({
"inline_data": {
"mime_type": "image/png",
"data": img_bytes
}
})
contents = [
types.Content(
role="user",
parts=parts,
),
]
generate_content_config = types.GenerateContentConfig(
temperature=1,
top_p=0.95,
top_k=40,
max_output_tokens=8192,
response_modalities=[
"image",
"text",
],
safety_settings=[
types.SafetySetting(
category="HARM_CATEGORY_CIVIC_INTEGRITY",
threshold="OFF",
),
],
response_mime_type="text/plain",
)
# Generate the content
response = client.models.generate_content_stream(
model=model,
contents=contents,
config=generate_content_config,
)
# Process the response
for chunk in response:
if not chunk.candidates or not chunk.candidates[0].content or not chunk.candidates[0].content.parts:
continue
if chunk.candidates[0].content.parts[0].inline_data:
inline_data = chunk.candidates[0].content.parts[0].inline_data
file_extension = mimetypes.guess_extension(inline_data.mime_type)
filename = f"{output_filename}{file_extension}"
save_binary_file(filename, inline_data.data)
# Convert binary data to PIL Image
img = Image.open(io.BytesIO(inline_data.data))
return img, f"Image saved as {filename}"
else:
return None, chunk.text
return None, "No image generated"
# Function to handle chat interaction
def chat_handler(user_input, user_image, chat_history):
# Add user message to chat history
if user_image:
# Save the uploaded image to a temporary file so Gradio can display it
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
user_image.save(tmp_file.name)
# Add the image to the chat history
chat_history.append({"role": "user", "content": tmp_file.name})
# Add the text prompt to the chat history
if user_input:
chat_history.append({"role": "user", "content": user_input})
# If no input (neither text nor image), return early
if not user_input and not user_image:
chat_history.append({"role": "assistant", "content": "Please provide a prompt or an image."})
return chat_history, None, ""
# Generate image based on user input
img, status = generate_image(user_input or "Generate an image", user_image)
# Add AI response to chat history
if img:
# Save the PIL Image to a temporary file so Gradio can display it
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_file:
img.save(tmp_file.name)
# Add the image as a file path that Gradio can serve
chat_history.append({"role": "assistant", "content": tmp_file.name})
# Add the status message
chat_history.append({"role": "assistant", "content": status})
return chat_history, None, ""
# Create Gradio interface with chatbot layout
with gr.Blocks(title="Image Editing Chatbot") as demo:
gr.Markdown("# Image Editing Chatbot")
gr.Markdown("Upload an image and/or type a prompt to generate or edit an image using Google's Gemini model")
# Chatbot display area for the conversation thread
chatbot = gr.Chatbot(
label="Chat",
height=300, # Reduced height from 400 to 300
type="messages", # Explicitly set to 'messages' format
avatar_images=(None, None) # No avatars for simplicity
)
# Input area
with gr.Row():
# Image upload button
image_input = gr.Image(
label="Upload Image",
type="pil",
scale=1,
height=100
)
# Text input
prompt_input = gr.Textbox(
label="",
placeholder="Type something",
show_label=False,
container=False,
scale=3
)
# Run button
run_btn = gr.Button("Run", scale=1)
# State to maintain chat history
chat_state = gr.State([])
# Connect the button to the chat handler
run_btn.click(
fn=chat_handler,
inputs=[prompt_input, image_input, chat_state],
outputs=[chatbot, image_input, prompt_input]
)
# Also allow Enter key to submit
prompt_input.submit(
fn=chat_handler,
inputs=[prompt_input, image_input, chat_state],
outputs=[chatbot, image_input, prompt_input]
)
if __name__ == "__main__":
demo.launch()