pipecat / voicemail_detection.py
Deadmon's picture
Upload 12 files
1366db9 verified
raw
history blame
17 kB
#
# Copyright (c) 2024–2025, Daily
#
# SPDX-License-Identifier: BSD 2-Clause License
#
import argparse
import asyncio
import functools
import os
import sys
from call_connection_manager import CallConfigManager, SessionManager
from dotenv import load_dotenv
from loguru import logger
from pipecat.audio.vad.silero import SileroVADAnalyzer
from pipecat.frames.frames import (
EndFrame,
EndTaskFrame,
InputAudioRawFrame,
StopTaskFrame,
TranscriptionFrame,
UserStartedSpeakingFrame,
UserStoppedSpeakingFrame,
)
from pipecat.pipeline.pipeline import Pipeline
from pipecat.pipeline.runner import PipelineRunner
from pipecat.pipeline.task import PipelineParams, PipelineTask
from pipecat.processors.frame_processor import FrameDirection, FrameProcessor
from pipecat.services.cartesia.tts import CartesiaTTSService
from pipecat.services.deepgram.stt import DeepgramSTTService
from pipecat.services.google.google import GoogleLLMContext
from pipecat.services.google.llm import GoogleLLMService
from pipecat.services.llm_service import FunctionCallParams
from pipecat.transports.services.daily import (
DailyParams,
DailyTransport,
)
load_dotenv(override=True)
logger.remove(0)
logger.add(sys.stderr, level="DEBUG")
daily_api_key = os.getenv("DAILY_API_KEY", "")
daily_api_url = os.getenv("DAILY_API_URL", "https://api.daily.co/v1")
# ------------ HELPER CLASSES ------------
class UserAudioCollector(FrameProcessor):
"""Collects audio frames in a buffer, then adds them to the LLM context when the user stops speaking."""
def __init__(self, context, user_context_aggregator):
super().__init__()
self._context = context
self._user_context_aggregator = user_context_aggregator
self._audio_frames = []
self._start_secs = 0.2 # this should match VAD start_secs (hardcoding for now)
self._user_speaking = False
async def process_frame(self, frame, direction):
await super().process_frame(frame, direction)
if isinstance(frame, TranscriptionFrame):
# Skip transcription frames - we're handling audio directly
return
elif isinstance(frame, UserStartedSpeakingFrame):
self._user_speaking = True
elif isinstance(frame, UserStoppedSpeakingFrame):
self._user_speaking = False
self._context.add_audio_frames_message(audio_frames=self._audio_frames)
await self._user_context_aggregator.push_frame(
self._user_context_aggregator.get_context_frame()
)
elif isinstance(frame, InputAudioRawFrame):
if self._user_speaking:
# When speaking, collect frames
self._audio_frames.append(frame)
else:
# Maintain a rolling buffer of recent audio (for start of speech)
self._audio_frames.append(frame)
frame_duration = len(frame.audio) / 16 * frame.num_channels / frame.sample_rate
buffer_duration = frame_duration * len(self._audio_frames)
while buffer_duration > self._start_secs:
self._audio_frames.pop(0)
buffer_duration -= frame_duration
await self.push_frame(frame, direction)
class FunctionHandlers:
"""Handlers for the voicemail detection bot functions."""
def __init__(self, session_manager):
self.session_manager = session_manager
self.prompt = None # Can be set externally
async def voicemail_response(self, params: FunctionCallParams):
"""Function the bot can call to leave a voicemail message."""
message = """You are Chatbot leaving a voicemail message. Say EXACTLY this message and then terminate the call:
'Hello, this is a message for Pipecat example user. This is Chatbot. Please call back on 123-456-7891. Thank you.'"""
await params.result_callback(message)
async def human_conversation(self, params: FunctionCallParams):
"""Function called when bot detects it's talking to a human."""
# Update state to indicate human was detected
self.session_manager.call_flow_state.set_human_detected()
await params.llm.push_frame(StopTaskFrame(), FrameDirection.UPSTREAM)
# ------------ MAIN FUNCTION ------------
async def main(
room_url: str,
token: str,
body: dict,
):
# ------------ CONFIGURATION AND SETUP ------------
# Create a configuration manager from the provided body
call_config_manager = CallConfigManager.from_json_string(body) if body else CallConfigManager()
# Get important configuration values
dialout_settings = call_config_manager.get_dialout_settings()
test_mode = call_config_manager.is_test_mode()
# Get caller info (might be None for dialout scenarios)
caller_info = call_config_manager.get_caller_info()
logger.info(f"Caller info: {caller_info}")
# Initialize the session manager
session_manager = SessionManager()
# ------------ TRANSPORT AND SERVICES SETUP ------------
# Initialize transport
transport = DailyTransport(
room_url,
token,
"Voicemail Detection Bot",
DailyParams(
api_url=daily_api_url,
api_key=daily_api_key,
audio_in_enabled=True,
audio_out_enabled=True,
video_out_enabled=False,
vad_analyzer=SileroVADAnalyzer(),
),
)
# Initialize TTS
tts = CartesiaTTSService(
api_key=os.getenv("CARTESIA_API_KEY", ""),
voice_id="b7d50908-b17c-442d-ad8d-810c63997ed9", # Use Helpful Woman voice by default
)
# Initialize speech-to-text service (for human conversation phase)
stt = DeepgramSTTService(api_key=os.getenv("DEEPGRAM_API_KEY"))
# ------------ FUNCTION DEFINITIONS ------------
async def terminate_call(
params: FunctionCallParams,
session_manager=None,
):
"""Function the bot can call to terminate the call."""
if session_manager:
# Set call terminated flag in the session manager
session_manager.call_flow_state.set_call_terminated()
await params.llm.queue_frame(EndTaskFrame(), FrameDirection.UPSTREAM)
# ------------ VOICEMAIL DETECTION PHASE SETUP ------------
# Define tools for both LLMs
tools = [
{
"function_declarations": [
{
"name": "switch_to_voicemail_response",
"description": "Call this function when you detect this is a voicemail system.",
},
{
"name": "switch_to_human_conversation",
"description": "Call this function when you detect this is a human.",
},
{
"name": "terminate_call",
"description": "Call this function to terminate the call.",
},
]
}
]
# Get voicemail detection prompt
voicemail_detection_prompt = call_config_manager.get_prompt("voicemail_detection_prompt")
if voicemail_detection_prompt:
system_instruction = voicemail_detection_prompt
else:
system_instruction = """You are Chatbot trying to determine if this is a voicemail system or a human.
If you hear any of these phrases (or very similar ones):
- "Please leave a message after the beep"
- "No one is available to take your call"
- "Record your message after the tone"
- "You have reached voicemail for..."
- "You have reached [phone number]"
- "[phone number] is unavailable"
- "The person you are trying to reach..."
- "The number you have dialed..."
- "Your call has been forwarded to an automated voice messaging system"
Then call the function switch_to_voicemail_response.
If it sounds like a human (saying hello, asking questions, etc.), call the function switch_to_human_conversation.
DO NOT say anything until you've determined if this is a voicemail or human.
If you are asked to terminate the call, **IMMEDIATELY** call the `terminate_call` function. **FAILURE TO CALL `terminate_call` IMMEDIATELY IS A MISTAKE.**"""
# Initialize voicemail detection LLM
voicemail_detection_llm = GoogleLLMService(
model="models/gemini-2.0-flash-lite", # Lighter model for faster detection
api_key=os.getenv("GOOGLE_API_KEY"),
system_instruction=system_instruction,
tools=tools,
)
# Initialize context and context aggregator
voicemail_detection_context = GoogleLLMContext()
voicemail_detection_context_aggregator = voicemail_detection_llm.create_context_aggregator(
voicemail_detection_context
)
# Get custom voicemail prompt if available
voicemail_prompt = call_config_manager.get_prompt("voicemail_prompt")
# Set up function handlers
handlers = FunctionHandlers(session_manager)
handlers.prompt = voicemail_prompt # Set custom prompt if available
# Register functions with the voicemail detection LLM
voicemail_detection_llm.register_function(
"switch_to_voicemail_response",
handlers.voicemail_response,
)
voicemail_detection_llm.register_function(
"switch_to_human_conversation", handlers.human_conversation
)
voicemail_detection_llm.register_function(
"terminate_call", lambda params: terminate_call(params, session_manager)
)
# Set up audio collector for handling audio input
voicemail_detection_audio_collector = UserAudioCollector(
voicemail_detection_context, voicemail_detection_context_aggregator.user()
)
# Build voicemail detection pipeline
voicemail_detection_pipeline = Pipeline(
[
transport.input(), # Transport user input
voicemail_detection_audio_collector, # Collect audio frames
voicemail_detection_context_aggregator.user(), # User context
voicemail_detection_llm, # LLM
tts, # TTS
transport.output(), # Transport bot output
voicemail_detection_context_aggregator.assistant(), # Assistant context
]
)
# Create pipeline task
voicemail_detection_pipeline_task = PipelineTask(
voicemail_detection_pipeline,
params=PipelineParams(allow_interruptions=True),
)
# ------------ EVENT HANDLERS ------------
@transport.event_handler("on_joined")
async def on_joined(transport, data):
# Start dialout if needed
if not test_mode and dialout_settings:
logger.debug("Dialout settings detected; starting dialout")
await call_config_manager.start_dialout(transport, dialout_settings)
@transport.event_handler("on_dialout_connected")
async def on_dialout_connected(transport, data):
logger.debug(f"Dial-out connected: {data}")
@transport.event_handler("on_dialout_answered")
async def on_dialout_answered(transport, data):
logger.debug(f"Dial-out answered: {data}")
# Start capturing transcription
await transport.capture_participant_transcription(data["sessionId"])
@transport.event_handler("on_first_participant_joined")
async def on_first_participant_joined(transport, participant):
logger.debug(f"First participant joined: {participant['id']}")
if test_mode:
await transport.capture_participant_transcription(participant["id"])
@transport.event_handler("on_participant_left")
async def on_participant_left(transport, participant, reason):
# Mark that a participant left early
session_manager.call_flow_state.set_participant_left_early()
await voicemail_detection_pipeline_task.queue_frame(EndFrame())
# ------------ RUN VOICEMAIL DETECTION PIPELINE ------------
if test_mode:
logger.debug("Detect voicemail example. You can test this in Daily Prebuilt")
runner = PipelineRunner()
print("!!! starting voicemail detection pipeline")
try:
await runner.run(voicemail_detection_pipeline_task)
except Exception as e:
logger.error(f"Error in voicemail detection pipeline: {e}")
import traceback
logger.error(traceback.format_exc())
print("!!! Done with voicemail detection pipeline")
# Check if we should exit early
if (
session_manager.call_flow_state.participant_left_early
or session_manager.call_flow_state.call_terminated
):
if session_manager.call_flow_state.participant_left_early:
print("!!! Participant left early; terminating call")
elif session_manager.call_flow_state.call_terminated:
print("!!! Bot terminated call; not proceeding to human conversation")
return
# ------------ HUMAN CONVERSATION PHASE SETUP ------------
# Get human conversation prompt
human_conversation_prompt = call_config_manager.get_prompt("human_conversation_prompt")
if human_conversation_prompt:
human_conversation_system_instruction = human_conversation_prompt
else:
human_conversation_system_instruction = """You are Chatbot talking to a human. Be friendly and helpful.
Start with: "Hello! I'm a friendly chatbot. How can I help you today?"
Keep your responses brief and to the point. Listen to what the person says.
When the person indicates they're done with the conversation by saying something like:
- "Goodbye"
- "That's all"
- "I'm done"
- "Thank you, that's all I needed"
THEN say: "Thank you for chatting. Goodbye!" and call the terminate_call function."""
# Initialize human conversation LLM
human_conversation_llm = GoogleLLMService(
model="models/gemini-2.0-flash-001", # Full model for better conversation
api_key=os.getenv("GOOGLE_API_KEY"),
system_instruction=human_conversation_system_instruction,
tools=tools,
)
# Initialize context and context aggregator
human_conversation_context = GoogleLLMContext()
human_conversation_context_aggregator = human_conversation_llm.create_context_aggregator(
human_conversation_context
)
# Register terminate function with the human conversation LLM
human_conversation_llm.register_function(
"terminate_call", functools.partial(terminate_call, session_manager=session_manager)
)
# Build human conversation pipeline
human_conversation_pipeline = Pipeline(
[
transport.input(), # Transport user input
stt, # Speech-to-text
human_conversation_context_aggregator.user(), # User context
human_conversation_llm, # LLM
tts, # TTS
transport.output(), # Transport bot output
human_conversation_context_aggregator.assistant(), # Assistant context
]
)
# Create pipeline task
human_conversation_pipeline_task = PipelineTask(
human_conversation_pipeline,
params=PipelineParams(allow_interruptions=True),
)
# Update participant left handler for human conversation phase
@transport.event_handler("on_participant_left")
async def on_participant_left(transport, participant, reason):
await voicemail_detection_pipeline_task.queue_frame(EndFrame())
await human_conversation_pipeline_task.queue_frame(EndFrame())
# ------------ RUN HUMAN CONVERSATION PIPELINE ------------
print("!!! starting human conversation pipeline")
# Initialize the context with system message
human_conversation_context_aggregator.user().set_messages(
[call_config_manager.create_system_message(human_conversation_system_instruction)]
)
# Queue the context frame to start the conversation
await human_conversation_pipeline_task.queue_frames(
[human_conversation_context_aggregator.user().get_context_frame()]
)
# Run the human conversation pipeline
try:
await runner.run(human_conversation_pipeline_task)
except Exception as e:
logger.error(f"Error in voicemail detection pipeline: {e}")
import traceback
logger.error(traceback.format_exc())
print("!!! Done with human conversation pipeline")
# ------------ SCRIPT ENTRY POINT ------------
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Pipecat Voicemail Detection Bot")
parser.add_argument("-u", "--url", type=str, help="Room URL")
parser.add_argument("-t", "--token", type=str, help="Room Token")
parser.add_argument("-b", "--body", type=str, help="JSON configuration string")
args = parser.parse_args()
# Log the arguments for debugging
logger.info(f"Room URL: {args.url}")
logger.info(f"Token: {args.token}")
logger.info(f"Body provided: {bool(args.body)}")
asyncio.run(main(args.url, args.token, args.body))