File size: 4,664 Bytes
7b850f8
 
5f70dc2
7b850f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb14e97
7b850f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb14e97
7b850f8
 
 
5f70dc2
cb14e97
 
 
 
5f70dc2
cb14e97
 
 
 
 
 
 
 
 
 
 
 
 
7b850f8
 
 
 
 
 
cb14e97
7b850f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb14e97
 
7b850f8
 
 
 
 
 
 
 
 
 
 
 
6090e99
7b850f8
 
 
 
 
 
6090e99
7b850f8
 
 
 
 
 
 
6090e99
7b850f8
 
 
6090e99
 
 
 
7b850f8
cb14e97
7b38ee1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import logging
import time
from dotenv import load_dotenv
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain_cohere import CohereEmbeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain_groq import ChatGroq

# Load environment variables
load_dotenv()

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)

# Function to extract text from PDF files
def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text

# Function to split the extracted text into chunks
def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks

# Function to create a FAISS vectorstore with batching
def get_vectorstore(text_chunks):
    cohere_api_key = os.getenv("COHERE_API_KEY")
    embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key)
    
    # Batch processing to respect Cohere's rate limit
    batch_size = 40
    all_embeddings = []

    for i in range(0, len(text_chunks), batch_size):
        batch = text_chunks[i:i + batch_size]
        logging.info(f"Processing batch {i // batch_size + 1}: {len(batch)} texts")
        try:
            batch_embeddings = embeddings.embed_documents(batch)
            all_embeddings.extend(batch_embeddings)
        except Exception as e:
            logging.error(f"Error embedding batch {i // batch_size + 1}: {e}")
            st.error(f"An error occurred while embedding batch {i // batch_size + 1}.")
        if i + batch_size < len(text_chunks):  # Enforce delay only if more batches remain
            logging.info("Waiting for 60 seconds to respect API rate limits...")
            time.sleep(60)  # Wait for 60 seconds

    vectorstore = FAISS.from_texts_with_embeddings(texts=text_chunks, embeddings=all_embeddings)
    return vectorstore

# Function to set up the conversational retrieval chain
def get_conversation_chain(vectorstore):
    try:
        llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0.5)
        memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
        
        conversation_chain = ConversationalRetrievalChain.from_llm(
            llm=llm,
            retriever=vectorstore.as_retriever(),
            memory=memory
        )
        
        logging.info("Conversation chain created successfully.")
        return conversation_chain
    except Exception as e:
        logging.error(f"Error creating conversation chain: {e}")
        st.error("An error occurred while setting up the conversation chain.")

# Handle user input
def handle_userinput(user_question):
    if st.session_state.conversation is not None:
        response = st.session_state.conversation({'question': user_question})
        st.session_state.chat_history = response['chat_history']

        for i, message in enumerate(st.session_state.chat_history):
            if i % 2 == 0:
                st.write(f"*User:* {message.content}")
            else:
                st.write(f"*Bot:* {message.content}")
    else:
        st.warning("Please process the documents first.")

# Main function to run the Streamlit app
def main():
    load_dotenv()
    st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    st.header("Chat with multiple PDFs :books:")
    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)

    with st.sidebar:
        st.subheader("Your documents")
        pdf_docs = st.file_uploader(
            "Upload your PDFs here and click on 'Process'", accept_multiple_files=True
        )
        if st.button("Process"):
            with st.spinner("Processing..."):
                raw_text = get_pdf_text(pdf_docs)
                text_chunks = get_text_chunks(raw_text)
                vectorstore = get_vectorstore(text_chunks)
                st.session_state.conversation = get_conversation_chain(vectorstore)

if __name__ == '__main__':
    main()