File size: 27,939 Bytes
4372b35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
# =============================================================================
# utils/utils.py - Utility Functions for Mamba Encoder Swarm Architecture
# =============================================================================

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import time
import json
import logging
import os
import psutil
import gc
from typing import Dict, List, Tuple, Optional, Union, Any
from collections import defaultdict, deque
from datetime import datetime, timedelta
import threading
import warnings
from functools import wraps, lru_cache
import hashlib
import pickle

# Setup logging
logger = logging.getLogger(__name__)

# =============================================================================
# PERFORMANCE MONITORING UTILITIES
# =============================================================================

class PerformanceMonitor:
    """Monitor and track performance metrics for the swarm architecture"""
    
    def __init__(self, max_history: int = 1000):
        self.metrics = defaultdict(list)
        self.max_history = max_history
        self.start_times = {}
        self.counters = defaultdict(int)
        self.lock = threading.Lock()
    
    def start_timer(self, name: str) -> None:
        """Start timing an operation"""
        with self.lock:
            self.start_times[name] = time.time()
    
    def end_timer(self, name: str) -> float:
        """End timing and record duration"""
        with self.lock:
            if name in self.start_times:
                duration = time.time() - self.start_times[name]
                self.record_metric(f"{name}_duration", duration)
                del self.start_times[name]
                return duration
            return 0.0
    
    def record_metric(self, name: str, value: float) -> None:
        """Record a metric value"""
        with self.lock:
            self.metrics[name].append({
                'value': value,
                'timestamp': time.time()
            })
            # Keep only recent history
            if len(self.metrics[name]) > self.max_history:
                self.metrics[name] = self.metrics[name][-self.max_history:]
    
    def increment_counter(self, name: str, amount: int = 1) -> None:
        """Increment a counter"""
        with self.lock:
            self.counters[name] += amount
    
    def get_stats(self, name: str) -> Dict[str, float]:
        """Get statistics for a metric"""
        with self.lock:
            if name not in self.metrics or not self.metrics[name]:
                return {}
            
            values = [m['value'] for m in self.metrics[name]]
            return {
                'count': len(values),
                'mean': np.mean(values),
                'std': np.std(values),
                'min': np.min(values),
                'max': np.max(values),
                'median': np.median(values),
                'recent': values[-10:] if len(values) >= 10 else values
            }
    
    def get_summary(self) -> Dict[str, Any]:
        """Get complete performance summary"""
        with self.lock:
            summary = {
                'metrics': {name: self.get_stats(name) for name in self.metrics},
                'counters': dict(self.counters),
                'active_timers': list(self.start_times.keys()),
                'timestamp': datetime.now().isoformat()
            }
            return summary

# Global performance monitor instance
perf_monitor = PerformanceMonitor()

def monitor_performance(func_name: str = None):
    """Decorator to monitor function performance"""
    def decorator(func):
        name = func_name or f"{func.__module__}.{func.__name__}"
        
        @wraps(func)
        def wrapper(*args, **kwargs):
            perf_monitor.start_timer(name)
            perf_monitor.increment_counter(f"{name}_calls")
            try:
                result = func(*args, **kwargs)
                perf_monitor.increment_counter(f"{name}_success")
                return result
            except Exception as e:
                perf_monitor.increment_counter(f"{name}_errors")
                raise
            finally:
                perf_monitor.end_timer(name)
        
        return wrapper
    return decorator

# =============================================================================
# MEMORY MANAGEMENT UTILITIES
# =============================================================================

class MemoryTracker:
    """Track memory usage across the swarm system"""
    
    @staticmethod
    def get_memory_info() -> Dict[str, float]:
        """Get current memory information"""
        process = psutil.Process()
        memory_info = process.memory_info()
        virtual_memory = psutil.virtual_memory()
        
        gpu_memory = {}
        if torch.cuda.is_available():
            for i in range(torch.cuda.device_count()):
                gpu_memory[f'gpu_{i}'] = {
                    'allocated': torch.cuda.memory_allocated(i) / 1024**3,
                    'cached': torch.cuda.memory_reserved(i) / 1024**3,
                    'max_allocated': torch.cuda.max_memory_allocated(i) / 1024**3
                }
        
        return {
            'process_memory_gb': memory_info.rss / 1024**3,
            'system_memory_percent': virtual_memory.percent,
            'system_memory_available_gb': virtual_memory.available / 1024**3,
            'gpu_memory': gpu_memory
        }
    
    @staticmethod
    def clear_gpu_cache():
        """Clear GPU memory cache"""
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            gc.collect()
    
    @staticmethod
    def optimize_memory():
        """Perform memory optimization"""
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

def memory_efficient(clear_cache: bool = True):
    """Decorator for memory-efficient functions"""
    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            if clear_cache:
                MemoryTracker.clear_gpu_cache()
            
            try:
                result = func(*args, **kwargs)
                return result
            finally:
                if clear_cache:
                    MemoryTracker.clear_gpu_cache()
        
        return wrapper
    return decorator

# =============================================================================
# TENSOR UTILITIES
# =============================================================================

class TensorUtils:
    """Utility functions for tensor operations"""
    
    @staticmethod
    def safe_tensor_to_device(tensor: torch.Tensor, device: torch.device) -> torch.Tensor:
        """Safely move tensor to device with error handling"""
        try:
            if tensor.device != device:
                return tensor.to(device)
            return tensor
        except RuntimeError as e:
            logger.warning(f"Failed to move tensor to {device}: {e}")
            return tensor
    
    @staticmethod
    def get_tensor_info(tensor: torch.Tensor) -> Dict[str, Any]:
        """Get comprehensive tensor information"""
        return {
            'shape': list(tensor.shape),
            'dtype': str(tensor.dtype),
            'device': str(tensor.device),
            'requires_grad': tensor.requires_grad,
            'memory_mb': tensor.numel() * tensor.element_size() / 1024**2,
            'is_contiguous': tensor.is_contiguous(),
            'stride': tensor.stride() if tensor.dim() > 0 else []
        }
    
    @staticmethod
    def batch_tensors(tensors: List[torch.Tensor], pad_value: float = 0.0) -> torch.Tensor:
        """Batch tensors with padding to same length"""
        if not tensors:
            return torch.empty(0)
        
        max_len = max(t.size(-1) for t in tensors)
        batch_size = len(tensors)
        
        if len(tensors[0].shape) == 1:
            batched = torch.full((batch_size, max_len), pad_value, dtype=tensors[0].dtype, device=tensors[0].device)
        else:
            feature_dim = tensors[0].size(-2)
            batched = torch.full((batch_size, feature_dim, max_len), pad_value, dtype=tensors[0].dtype, device=tensors[0].device)
        
        for i, tensor in enumerate(tensors):
            if len(tensor.shape) == 1:
                batched[i, :tensor.size(0)] = tensor
            else:
                batched[i, :, :tensor.size(-1)] = tensor
        
        return batched
    
    @staticmethod
    def split_tensor_by_chunks(tensor: torch.Tensor, chunk_size: int) -> List[torch.Tensor]:
        """Split tensor into chunks of specified size"""
        if tensor.size(0) <= chunk_size:
            return [tensor]
        
        return [tensor[i:i + chunk_size] for i in range(0, tensor.size(0), chunk_size)]

# =============================================================================
# ROUTING UTILITIES
# =============================================================================

class RoutingUtils:
    """Utilities for encoder routing and load balancing"""
    
    @staticmethod
    def calculate_load_balance_loss(routing_weights: torch.Tensor, epsilon: float = 1e-8) -> torch.Tensor:
        """Calculate load balance loss to encourage equal encoder usage"""
        # routing_weights: [batch_size, seq_len, num_encoders]
        avg_routing = routing_weights.mean(dim=[0, 1])  # [num_encoders]
        
        # Variance penalty to encourage uniform distribution
        target_load = 1.0 / routing_weights.size(-1)
        load_balance_loss = torch.var(avg_routing) / (target_load ** 2 + epsilon)
        
        return load_balance_loss
    
    @staticmethod
    def apply_top_k_routing(logits: torch.Tensor, k: int) -> Tuple[torch.Tensor, torch.Tensor]:
        """Apply top-k routing with Gumbel softmax"""
        # Get top-k indices
        top_k_logits, top_k_indices = torch.topk(logits, k, dim=-1)
        
        # Create mask for top-k
        mask = torch.zeros_like(logits)
        mask.scatter_(-1, top_k_indices, 1.0)
        
        # Apply Gumbel softmax to top-k
        gumbel_noise = -torch.log(-torch.log(torch.rand_like(top_k_logits) + 1e-8) + 1e-8)
        top_k_weights = F.softmax((top_k_logits + gumbel_noise) / 1.0, dim=-1)
        
        # Reconstruct full weights
        weights = torch.zeros_like(logits)
        weights.scatter_(-1, top_k_indices, top_k_weights)
        
        return weights, mask
    
    @staticmethod
    def entropy_regularization(routing_weights: torch.Tensor) -> torch.Tensor:
        """Add entropy regularization to encourage exploration"""
        # Avoid log(0)
        routing_weights = torch.clamp(routing_weights, min=1e-8)
        entropy = -torch.sum(routing_weights * torch.log(routing_weights), dim=-1)
        return -entropy.mean()  # Negative because we want to maximize entropy

# =============================================================================
# TEXT PROCESSING UTILITIES
# =============================================================================

class TextUtils:
    """Utilities for text processing and analysis"""
    
    @staticmethod
    def chunk_text(text: str, chunk_size: int = 512, overlap: int = 50) -> List[str]:
        """Split text into overlapping chunks"""
        words = text.split()
        if len(words) <= chunk_size:
            return [text]
        
        chunks = []
        start = 0
        
        while start < len(words):
            end = min(start + chunk_size, len(words))
            chunk = ' '.join(words[start:end])
            chunks.append(chunk)
            
            if end >= len(words):
                break
            
            start = end - overlap
        
        return chunks
    
    @staticmethod
    def estimate_tokens(text: str, chars_per_token: float = 4.0) -> int:
        """Estimate number of tokens in text"""
        return max(1, int(len(text) / chars_per_token))
    
    @staticmethod
    def clean_text(text: str) -> str:
        """Clean and normalize text"""
        if not text:
            return ""
        
        # Remove excessive whitespace
        text = ' '.join(text.split())
        
        # Remove control characters
        text = ''.join(char for char in text if ord(char) >= 32 or char in '\n\t')
        
        return text.strip()
    
    @staticmethod
    def detect_language(text: str) -> str:
        """Simple language detection based on character patterns"""
        # This is a simplified version - for production, use langdetect library
        if not text:
            return "unknown"
        
        # Count character types
        ascii_count = sum(1 for c in text if ord(c) < 128)
        total_chars = len(text)
        
        if total_chars == 0:
            return "unknown"
        
        ascii_ratio = ascii_count / total_chars
        
        if ascii_ratio > 0.9:
            return "en"  # Likely English
        elif ascii_ratio > 0.7:
            return "mixed"
        else:
            return "non-latin"

# =============================================================================
# CONFIGURATION UTILITIES
# =============================================================================

class ConfigUtils:
    """Utilities for configuration management"""
    
    @staticmethod
    def load_config(config_path: str) -> Dict[str, Any]:
        """Load configuration from JSON file"""
        try:
            with open(config_path, 'r', encoding='utf-8') as f:
                config = json.load(f)
            logger.info(f"Loaded configuration from {config_path}")
            return config
        except Exception as e:
            logger.error(f"Failed to load config from {config_path}: {e}")
            return {}
    
    @staticmethod
    def save_config(config: Dict[str, Any], config_path: str) -> bool:
        """Save configuration to JSON file"""
        try:
            os.makedirs(os.path.dirname(config_path), exist_ok=True)
            with open(config_path, 'w', encoding='utf-8') as f:
                json.dump(config, f, indent=2, ensure_ascii=False)
            logger.info(f"Saved configuration to {config_path}")
            return True
        except Exception as e:
            logger.error(f"Failed to save config to {config_path}: {e}")
            return False
    
    @staticmethod
    def merge_configs(base_config: Dict[str, Any], override_config: Dict[str, Any]) -> Dict[str, Any]:
        """Merge two configuration dictionaries"""
        merged = base_config.copy()
        
        for key, value in override_config.items():
            if key in merged and isinstance(merged[key], dict) and isinstance(value, dict):
                merged[key] = ConfigUtils.merge_configs(merged[key], value)
            else:
                merged[key] = value
        
        return merged
    
    @staticmethod
    def validate_config(config: Dict[str, Any], required_keys: List[str]) -> List[str]:
        """Validate configuration has required keys"""
        missing_keys = []
        
        for key in required_keys:
            if '.' in key:
                # Handle nested keys
                keys = key.split('.')
                current = config
                for k in keys:
                    if not isinstance(current, dict) or k not in current:
                        missing_keys.append(key)
                        break
                    current = current[k]
            elif key not in config:
                missing_keys.append(key)
        
        return missing_keys

# =============================================================================
# CACHING UTILITIES
# =============================================================================

class CacheManager:
    """Intelligent caching for model outputs and computations"""
    
    def __init__(self, max_size: int = 1000, ttl_seconds: int = 3600):
        self.max_size = max_size
        self.ttl_seconds = ttl_seconds
        self.cache = {}
        self.access_times = {}
        self.lock = threading.Lock()
    
    def _generate_key(self, *args, **kwargs) -> str:
        """Generate cache key from arguments"""
        key_data = {
            'args': args,
            'kwargs': sorted(kwargs.items())
        }
        return hashlib.md5(pickle.dumps(key_data)).hexdigest()
    
    def get(self, key: str) -> Optional[Any]:
        """Get item from cache"""
        with self.lock:
            if key not in self.cache:
                return None
            
            # Check TTL
            if time.time() - self.cache[key]['timestamp'] > self.ttl_seconds:
                self._remove_key(key)
                return None
            
            self.access_times[key] = time.time()
            return self.cache[key]['value']
    
    def put(self, key: str, value: Any) -> None:
        """Put item in cache"""
        with self.lock:
            # Clean up if cache is full
            if len(self.cache) >= self.max_size:
                self._evict_lru()
            
            self.cache[key] = {
                'value': value,
                'timestamp': time.time()
            }
            self.access_times[key] = time.time()
    
    def _remove_key(self, key: str) -> None:
        """Remove key from cache"""
        if key in self.cache:
            del self.cache[key]
        if key in self.access_times:
            del self.access_times[key]
    
    def _evict_lru(self) -> None:
        """Evict least recently used item"""
        if not self.access_times:
            return
        
        lru_key = min(self.access_times.keys(), key=lambda k: self.access_times[k])
        self._remove_key(lru_key)
    
    def clear(self) -> None:
        """Clear all cached items"""
        with self.lock:
            self.cache.clear()
            self.access_times.clear()
    
    def stats(self) -> Dict[str, Any]:
        """Get cache statistics"""
        with self.lock:
            return {
                'size': len(self.cache),
                'max_size': self.max_size,
                'hit_ratio': getattr(self, '_hits', 0) / max(getattr(self, '_requests', 1), 1),
                'ttl_seconds': self.ttl_seconds
            }

# Global cache manager
cache_manager = CacheManager()

def cached(ttl_seconds: int = 3600):
    """Decorator for caching function results"""
    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            cache_key = cache_manager._generate_key(func.__name__, *args, **kwargs)
            
            # Try to get from cache
            result = cache_manager.get(cache_key)
            if result is not None:
                return result
            
            # Compute and cache
            result = func(*args, **kwargs)
            cache_manager.put(cache_key, result)
            
            return result
        
        return wrapper
    return decorator

# =============================================================================
# DEBUGGING AND LOGGING UTILITIES
# =============================================================================

class DebugUtils:
    """Utilities for debugging the swarm architecture"""
    
    @staticmethod
    def log_tensor_stats(tensor: torch.Tensor, name: str) -> None:
        """Log comprehensive tensor statistics"""
        if not tensor.numel():
            logger.debug(f"{name}: Empty tensor")
            return
        
        stats = {
            'shape': list(tensor.shape),
            'dtype': str(tensor.dtype),
            'device': str(tensor.device),
            'mean': tensor.float().mean().item(),
            'std': tensor.float().std().item(),
            'min': tensor.min().item(),
            'max': tensor.max().item(),
            'has_nan': torch.isnan(tensor).any().item(),
            'has_inf': torch.isinf(tensor).any().item()
        }
        
        logger.debug(f"{name} stats: {stats}")
    
    @staticmethod
    def validate_tensor(tensor: torch.Tensor, name: str, check_finite: bool = True) -> bool:
        """Validate tensor for common issues"""
        if not isinstance(tensor, torch.Tensor):
            logger.error(f"{name}: Not a tensor, got {type(tensor)}")
            return False
        
        if tensor.numel() == 0:
            logger.warning(f"{name}: Empty tensor")
            return False
        
        if check_finite:
            if torch.isnan(tensor).any():
                logger.error(f"{name}: Contains NaN values")
                return False
            
            if torch.isinf(tensor).any():
                logger.error(f"{name}: Contains infinite values")
                return False
        
        return True
    
    @staticmethod
    def trace_function_calls(func):
        """Decorator to trace function calls"""
        @wraps(func)
        def wrapper(*args, **kwargs):
            logger.debug(f"Calling {func.__name__} with args: {len(args)}, kwargs: {list(kwargs.keys())}")
            start_time = time.time()
            
            try:
                result = func(*args, **kwargs)
                duration = time.time() - start_time
                logger.debug(f"{func.__name__} completed in {duration:.4f}s")
                return result
            except Exception as e:
                duration = time.time() - start_time
                logger.error(f"{func.__name__} failed after {duration:.4f}s: {e}")
                raise
        
        return wrapper

# =============================================================================
# SYSTEM UTILITIES
# =============================================================================

class SystemUtils:
    """System-level utilities"""
    
    @staticmethod
    def get_system_info() -> Dict[str, Any]:
        """Get comprehensive system information"""
        cpu_info = {
            'cpu_count': psutil.cpu_count(),
            'cpu_percent': psutil.cpu_percent(interval=1),
            'load_average': os.getloadavg() if hasattr(os, 'getloadavg') else None
        }
        
        memory_info = psutil.virtual_memory()._asdict()
        
        gpu_info = {}
        if torch.cuda.is_available():
            gpu_info = {
                'device_count': torch.cuda.device_count(),
                'current_device': torch.cuda.current_device(),
                'devices': [
                    {
                        'name': torch.cuda.get_device_name(i),
                        'memory_total': torch.cuda.get_device_properties(i).total_memory,
                        'memory_allocated': torch.cuda.memory_allocated(i),
                        'memory_cached': torch.cuda.memory_reserved(i)
                    }
                    for i in range(torch.cuda.device_count())
                ]
            }
        
        return {
            'cpu': cpu_info,
            'memory': memory_info,
            'gpu': gpu_info,
            'python_version': f"{__import__('sys').version_info.major}.{__import__('sys').version_info.minor}",
            'torch_version': torch.__version__,
            'timestamp': datetime.now().isoformat()
        }
    
    @staticmethod
    def ensure_directory(path: str) -> None:
        """Ensure directory exists"""
        os.makedirs(path, exist_ok=True)
    
    @staticmethod
    def safe_file_write(content: str, filepath: str, backup: bool = True) -> bool:
        """Safely write content to file with backup"""
        try:
            # Create directory if needed
            os.makedirs(os.path.dirname(filepath), exist_ok=True)
            
            # Create backup if file exists
            if backup and os.path.exists(filepath):
                backup_path = f"{filepath}.backup"
                import shutil
                shutil.copy2(filepath, backup_path)
            
            # Write content
            with open(filepath, 'w', encoding='utf-8') as f:
                f.write(content)
            
            return True
        except Exception as e:
            logger.error(f"Failed to write file {filepath}: {e}")
            return False

# =============================================================================
# EXPORT UTILITIES
# =============================================================================

def format_model_size(num_params: int) -> str:
    """Format model size in human-readable format"""
    for unit in ['', 'K', 'M', 'B', 'T']:
        if num_params < 1000:
            return f"{num_params:.1f}{unit}"
        num_params /= 1000
    return f"{num_params:.1f}P"

def format_memory_size(bytes_size: int) -> str:
    """Format memory size in human-readable format"""
    for unit in ['B', 'KB', 'MB', 'GB', 'TB']:
        if bytes_size < 1024:
            return f"{bytes_size:.1f}{unit}"
        bytes_size /= 1024
    return f"{bytes_size:.1f}PB"

def format_duration(seconds: float) -> str:
    """Format duration in human-readable format"""
    if seconds < 1:
        return f"{seconds*1000:.1f}ms"
    elif seconds < 60:
        return f"{seconds:.1f}s"
    elif seconds < 3600:
        minutes = seconds / 60
        return f"{minutes:.1f}m"
    else:
        hours = seconds / 3600
        return f"{hours:.1f}h"

# =============================================================================
# INITIALIZATION
# =============================================================================

def initialize_logging(log_level: str = "INFO", log_file: Optional[str] = None) -> None:
    """Initialize logging configuration"""
    level = getattr(logging, log_level.upper(), logging.INFO)
    
    handlers = [logging.StreamHandler()]
    if log_file:
        handlers.append(logging.FileHandler(log_file))
    
    logging.basicConfig(
        level=level,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
        handlers=handlers
    )

def setup_warnings() -> None:
    """Setup warning filters"""
    # Filter out common warnings that don't affect functionality
    warnings.filterwarnings("ignore", category=UserWarning, module="torch")
    warnings.filterwarnings("ignore", category=FutureWarning, module="transformers")

# Initialize on import
setup_warnings()

# =============================================================================
# MAIN UTILITIES EXPORT
# =============================================================================

__all__ = [
    # Performance monitoring
    'PerformanceMonitor', 'perf_monitor', 'monitor_performance',
    
    # Memory management
    'MemoryTracker', 'memory_efficient',
    
    # Tensor utilities
    'TensorUtils',
    
    # Routing utilities
    'RoutingUtils',
    
    # Text processing
    'TextUtils',
    
    # Configuration
    'ConfigUtils',
    
    # Caching
    'CacheManager', 'cache_manager', 'cached',
    
    # Debugging
    'DebugUtils',
    
    # System utilities
    'SystemUtils',
    
    # Formatting utilities
    'format_model_size', 'format_memory_size', 'format_duration',
    
    # Initialization
    'initialize_logging', 'setup_warnings'
]