Spaces:
Runtime error
Runtime error
File size: 3,719 Bytes
5757326 7cfa370 031a8cf 7cfa370 5757326 7cfa370 5757326 7cfa370 b284eda 4f173e5 7cfa370 15ef111 7cfa370 5757326 7cfa370 5757326 d7265e9 7cfa370 5757326 7cfa370 5757326 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# import streamlit as st
# import transformers
# import torch
# # Load the model and tokenizer
# model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
# tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/twitter-xlm-roberta-base-sentiment_dee")
# # Define the function for sentiment analysis
# @st.cache_resource
# def predict_sentiment(text):
# # Load the pipeline.
# pipeline = transformers.pipeline("sentiment-analysis")
# # Predict the sentiment.
# prediction = pipeline(text)
# sentiment = prediction[0]["label"]
# score = prediction[0]["score"]
# return sentiment, score
# # Setting the page configurations
# st.set_page_config(
# page_title="Sentiment Analysis App",
# page_icon=":smile:",
# layout="wide",
# initial_sidebar_state="auto",
# )
# # Add description and title
# st.write("""
# # Predict if your text is Positive, Negative or Nuetral ...
# Please type your text and press ENTER key to know if your text is positive, negative, or neutral sentiment!
# """)
# # Add image
# image = st.image("sentiment.jpeg", width=400)
# # Get user input
# text = st.text_input("Type here:")
# # Define the CSS style for the app
# st.markdown(
# """
# <style>
# body {
# background-color: #f5f5f5;
# }
# h1 {
# color: #4e79a7;
# }
# </style>
# """,
# unsafe_allow_html=True
# )
# # Show sentiment output
# if text:
# sentiment, score = predict_sentiment(text)
# if sentiment == "Positive":
# st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
# elif sentiment == "Negative":
# st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
# else:
# st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
import streamlit as st
import transformers
import torch
# Load the model and tokenizer
model = transformers.AutoModelForSequenceClassification.from_pretrained("DeeeTeeee01/mytest_trainer_roberta")
tokenizer = transformers.AutoTokenizer.from_pretrained("DeeeTeeee01/mytest_trainer_roberta")
# Define the function for sentiment analysis
@st.cache_resource
def predict_sentiment(text):
# Load the pipeline
pipeline = transformers.pipeline("sentiment-analysis")
# Predict the sentiment
prediction = pipeline(text)
sentiment = prediction[0]["label"]
score = prediction[0]["score"]
return sentiment, score
# Setting the page configurations
st.set_page_config(
page_title="Sentiment Analysis App",
page_icon=":smile:",
layout="wide",
initial_sidebar_state="auto",
)
# Add description and title
st.write("""
# Predict if your text is Positive, Negative or Neutral ...
Please type your text and click the Predict button to know if your text has a positive, negative or neutral sentiment!
""")
# Add image
image = st.image("sentiment.jpeg", width=400)
# Get user input
text = st.text_input("Type here:")
# Add Predict button
predict_button = st.button("Predict")
# Define the CSS style for the app
st.markdown(
"""
<style>
body {
background: linear-gradient(to right, #4e79a7, #86a8e7);
color: lightblue;
}
h1 {
color: #4e79a7;
}
</style>
""",
unsafe_allow_html=True
)
# Show sentiment output
if predict_button and text:
sentiment, score = predict_sentiment(text)
if sentiment == "Positive":
st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
elif sentiment == "Negative":
st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
else:
st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|