Spaces:
Running
Running
import os | |
from threading import Thread | |
from dotenv import load_dotenv | |
load_dotenv() | |
import requests | |
from bs4 import BeautifulSoup | |
from newsapi import NewsApiClient | |
import pandas as pd | |
import torch | |
import soundfile as sf | |
from flask import Flask, request, jsonify, send_file | |
from transformers import ( | |
AutoModelForSequenceClassification, AutoTokenizer, pipeline, | |
BartTokenizer, BartForConditionalGeneration, | |
MarianMTModel, MarianTokenizer, | |
BarkModel, AutoProcessor | |
) | |
# ------------------------- | |
# Global Setup and Environment Variables | |
# ------------------------- | |
NEWS_API_KEY = os.getenv("NEWS_API_KEY") # Set this in your .env file | |
# Set device for Torch models | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# ------------------------- | |
# Part 1: News Scraping Functions | |
# ------------------------- | |
def fetch_and_scrape_news(company, api_key, count=11, output_file='news_articles.xlsx'): | |
""" | |
Fetch news article URLs related to a given company using News API, | |
scrape each for headline and content, and save the results to an Excel file. | |
""" | |
newsapi = NewsApiClient(api_key=api_key) | |
all_articles = newsapi.get_everything(q=company, language='en', sort_by='relevancy', page_size=count) | |
articles = all_articles.get('articles', []) | |
scraped_data = [] | |
for article in articles: | |
url = article.get('url') | |
if url: | |
scraped_article = scrape_news(url) | |
if scraped_article: | |
scraped_article['url'] = url | |
scraped_data.append(scraped_article) | |
df = pd.DataFrame(scraped_data) | |
df.to_excel(output_file, index=False, header=True) | |
print(f"News scraping complete. Data saved to {output_file}") | |
def scrape_news(url): | |
""" | |
Scrape the news article for headline and content. | |
""" | |
headers = {"User-Agent": "Mozilla/5.0"} | |
response = requests.get(url, headers=headers) | |
if response.status_code != 200: | |
print(f"Failed to fetch the page: {url}") | |
return None | |
soup = BeautifulSoup(response.text, "html.parser") | |
headline = soup.find("h1").get_text(strip=True) if soup.find("h1") else "No headline found" | |
paragraphs = soup.find_all("p") | |
article_text = " ".join(p.get_text(strip=True) for p in paragraphs) | |
return {"headline": headline, "content": article_text} | |
# ------------------------- | |
# Part 2: Sentiment Analysis Setup | |
# ------------------------- | |
sentiment_model_name = "cross-encoder/nli-distilroberta-base" | |
sentiment_model = AutoModelForSequenceClassification.from_pretrained( | |
sentiment_model_name, | |
torch_dtype=torch.float16, | |
device_map="auto" | |
) | |
sentiment_tokenizer = AutoTokenizer.from_pretrained(sentiment_model_name) | |
classifier = pipeline("zero-shot-classification", model=sentiment_model, tokenizer=sentiment_tokenizer) | |
labels = ["positive", "negative", "neutral"] | |
# ------------------------- | |
# Part 3: Summarization Setup | |
# ------------------------- | |
bart_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn') | |
bart_model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn') | |
def split_into_chunks(text, tokenizer, max_tokens=1024): | |
words = text.split() | |
chunks = [] | |
current_chunk = [] | |
current_length = 0 | |
for word in words: | |
tokenized_word = tokenizer.encode(word, add_special_tokens=False) | |
if current_length + len(tokenized_word) <= max_tokens: | |
current_chunk.append(word) | |
current_length += len(tokenized_word) | |
else: | |
chunks.append(' '.join(current_chunk)) | |
current_chunk = [word] | |
current_length = len(tokenized_word) | |
if current_chunk: | |
chunks.append(' '.join(current_chunk)) | |
return chunks | |
# ------------------------- | |
# Part 4: Translation Setup (English to Hindi) | |
# ------------------------- | |
translation_model_name = 'Helsinki-NLP/opus-mt-en-hi' | |
trans_tokenizer = MarianTokenizer.from_pretrained(translation_model_name) | |
trans_model = MarianMTModel.from_pretrained(translation_model_name) | |
def translate_text(text): | |
tokens = trans_tokenizer(text, return_tensors="pt", padding=True) | |
translated = trans_model.generate(**tokens) | |
return trans_tokenizer.decode(translated[0], skip_special_tokens=True) | |
# ------------------------- | |
# Part 5: Bark TTS Setup (Hindi) | |
# ------------------------- | |
bark_model = BarkModel.from_pretrained("suno/bark-small").to(device) | |
processor = AutoProcessor.from_pretrained("suno/bark") | |
# ------------------------- | |
# Part 6: Process Company - Main Pipeline Function | |
# ------------------------- | |
def process_company(company): | |
# Step 1: Fetch and scrape news | |
fetch_and_scrape_news(company, NEWS_API_KEY) | |
df = pd.read_excel('news_articles.xlsx') | |
print("Scraped Articles:") | |
print(df) | |
titles, summaries, sentiments, urls = [], [], [], [] | |
for index, row in df.iterrows(): | |
article_text = row.get("content", "") | |
title = row.get("headline", "No title") | |
url = row.get("url", "") | |
chunks = split_into_chunks(article_text, bart_tokenizer) | |
chunk_summaries = [] | |
for chunk in chunks: | |
inputs = bart_tokenizer([chunk], max_length=1024, return_tensors='pt', truncation=True) | |
summary_ids = bart_model.generate(inputs.input_ids, num_beams=4, max_length=130, min_length=30, early_stopping=True) | |
chunk_summary = bart_tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
chunk_summaries.append(chunk_summary) | |
final_summary = ' '.join(chunk_summaries) | |
sentiment_result = classifier(final_summary, labels) | |
sentiment = sentiment_result["labels"][0] | |
titles.append(title) | |
summaries.append(final_summary) | |
sentiments.append(sentiment) | |
urls.append(url) | |
final_df = pd.DataFrame({ | |
"Title": titles, | |
"Summary": summaries, | |
"Sentiment": sentiments, | |
"URL": urls | |
}) | |
final_df["Translated Summary"] = final_df["Summary"].apply(translate_text) | |
final_df.to_excel('translated_news_articles.xlsx', index=False) | |
print("Final processed data with translations:") | |
print(final_df) | |
# Combine all translated summaries into one text prompt | |
final_translated_text = "\n\n".join(final_df["Translated Summary"].tolist()) | |
# Generate speech from the combined Hindi text using Bark | |
inputs = processor(final_translated_text, return_tensors="pt").to(device) | |
speech_output = bark_model.generate(**inputs) | |
audio_path = "final_summary.wav" | |
sf.write(audio_path, speech_output[0].cpu().numpy(), bark_model.generation_config.sample_rate) | |
return audio_path | |
# ------------------------- | |
# Part 7: Flask Backend Setup | |
# ------------------------- | |
app = Flask(__name__) | |
def process_route(): | |
data = request.get_json() | |
company = data.get("company") | |
if not company: | |
return jsonify({"error": "No company provided"}), 400 | |
audio_path = process_company(company) | |
# Return the audio file path as JSON (Gradio will load the file) | |
return jsonify({"audio_path": audio_path}) | |
# ------------------------- | |
# Part 8: Gradio Interface Setup | |
# ------------------------- | |
def gradio_interface(company): | |
# Call the Flask endpoint | |
response = requests.post("http://127.0.0.1:5000/process", json={"company": company}) | |
result = response.json() | |
# Return the audio file path; Gradio's audio output type will read the file. | |
return result.get("audio_path") | |
def launch_gradio(): | |
import gradio as gr | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=gr.Textbox(label="Enter Company Name"), | |
outputs=gr.Audio(type="filepath", label="News Summary Audio (Hindi)"), | |
title="News Summarization & TTS", | |
description="Enter a company name to fetch news, generate a Hindi summary, and listen to the audio." | |
) | |
iface.launch() | |
# ------------------------- | |
# Main: Run Flask and Gradio | |
# ------------------------- | |
if __name__ == "__main__": | |
# Run the Flask app in a separate thread. | |
flask_thread = Thread(target=lambda: app.run(host="0.0.0.0", port=5000, debug=False, use_reloader=False)) | |
flask_thread.start() | |
# Launch the Gradio interface. | |
launch_gradio() | |