eacortes's picture
push new db or demo version
c0a630f
import gradio as gr
import numpy as np
import pandas as pd
from rdkit import Chem
from rdkit.Chem import Draw
from rdkit.Chem.Draw import rdMolDraw2D
from constants import EMBEDDING_DIMENSION, LAUNCH_PARAMETERS, SUPPORTED_EMBEDDING_DIMENSIONS
from data import SAMPLE_SMILES
from service import MolecularEmbeddingService, SimilarMolecule, setup_logger
logger = setup_logger()
class App:
def __init__(self):
self.embedding_service = MolecularEmbeddingService()
self.demo = self.create_gradio_interface()
def molecule_similarity_search_pipeline(
self, smiles: str, embed_dim: int
) -> tuple[list[float], list[SimilarMolecule], str]:
"""Complete pipeline: SMILES -> Canonical SMILES -> Embedding -> Similar molecules"""
try:
if not smiles or smiles.strip() == "":
return [], [], "Please provide a valid SMILES string"
logger.info(f"Running similarity search: {smiles} - ({embed_dim})")
embedding = self.embedding_service.get_molecular_embedding(smiles, embed_dim)
neighbors = self.embedding_service.find_similar_molecules(embedding, embed_dim)
return embedding.tolist(), neighbors, "Search completed successfully"
except Exception as e:
error_msg = f"Search failed: {str(e)}"
logger.error(error_msg)
return [], [], error_msg
@staticmethod
def _truncated_attribute(obj, attr, max_len=45):
return f"{obj[attr][:max_len]}{'...' if len(obj[attr]) > max_len else ''}"
@classmethod
def _draw_molecule_grid(cls, similar: list[SimilarMolecule]) -> np.ndarray:
mols = [Chem.MolFromSmiles(m["smiles"]) for m in similar]
legends = [
f"{cls._truncated_attribute(m, 'name')}\n{m['properties']}\n"
f"{cls._truncated_attribute(m, 'smiles')}\n{m['score']:.2E}"
for m in similar
]
draw_options = rdMolDraw2D.MolDrawOptions()
draw_options.legendFontSize = 17
draw_options.legendFraction = 0.29
draw_options.drawMolsSameScale = False
img = Draw.MolsToGridImage(
mols,
legends=legends,
molsPerRow=3,
subImgSize=(250, 250),
drawOptions=draw_options,
)
return img
@staticmethod
def _display_sample_molecules(mols: pd.DataFrame):
for _, row in mols.iterrows():
with gr.Group():
gr.Textbox(
value=row["smiles"], label=f"{row['name']} ({row['properties']})", interactive=False, scale=3
)
sample_btn = gr.Button(
f"Load {row['name']}",
scale=1,
size="sm",
variant="primary",
)
sample_btn.click(
fn=None,
js=f"() => {{window.setCWSmiles('{row['smiles']}');}}",
)
@staticmethod
def clear_all():
return "", "", [], [], None, "Cleared - Draw a new molecule or enter SMILES"
def handle_search(self, smiles: str, embed_dim: int):
if not smiles.strip():
return (
[],
[],
None,
"Please draw a molecule or enter a SMILES string",
)
embedding, similar, status = self.molecule_similarity_search_pipeline(smiles, embed_dim)
img = self._draw_molecule_grid(similar)
return embedding, similar, img, status
def create_gradio_interface(self):
"""Create the Gradio interface optimized for JavaScript client usage"""
head_scripts = """
<link rel="preload" href="gradio_api/file=src/static/chemwriter/chemwriter.css" as="style">
<link rel="preload" href="gradio_api/file=src/static/chemwriter/chemwriter-user.css" as="style">
<link rel="preload" href="gradio_api/file=src/static/chemwriter/chemwriter.js" as="script">
<link rel="preload" href="gradio_api/file=src/static/main.min.js" as="script">
<link rel="stylesheet" href="gradio_api/file=src/static/chemwriter/chemwriter.css">
<link rel="stylesheet" href="gradio_api/file=src/static/chemwriter/chemwriter-user.css">
<script src="gradio_api/file=src/static/chemwriter/chemwriter.js" defer></script>
<script src="gradio_api/file=src/static/main.min.js" defer></script>
"""
with gr.Blocks(
title="Chem-MRL: Molecular Similarity Search Demo",
theme=gr.themes.Soft(), # type: ignore
head=head_scripts,
) as demo:
gr.Markdown("""
# 🧪 Chem-MRL: Molecular Similarity Search Demo
Use the ChemWriter editor to draw a molecule or input a SMILES string.<br/>
The backend encodes the molecule using the Chem-MRL model to produce a vector embedding.<br/>
Similarity search is performed via an HNSW-indexed Redis vector store to retrieve closest matches.
""")
gr.HTML(
"""
The Redis database indexes <a href="https://isomerdesign.com/pihkal/home">Isomer Design's</a> molecular library.
<a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">
<img src="https://mirrors.creativecommons.org/presskit/buttons/80x15/svg/by-nc-sa.svg" alt="License: CC BY-NC-SA 4.0"
style="display:inline; height:15px; vertical-align:middle; margin-left:4px;"/>
</a>""", # noqa: E501
padding=False,
)
gr.Markdown(
"[Model Repo](https://github.com/emapco/chem-mrl) | [Demo Repo](https://github.com/emapco/chem-mrl-demo)"
)
with gr.Tab("🔬 Molecular Search"), gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Molecule Input")
gr.HTML(
'<div id="editor" class="chemwriter" '
'data-chemwriter-ui="editor" '
'data-chemwriter-width="100%" data-chemwriter-height="450"></div>'
)
smiles_input = gr.Textbox(
label="SMILES String",
placeholder="Draw a molecule above or enter SMILES here (e.g., CCO for ethanol)",
lines=2,
elem_id="smiles_input",
show_copy_button=True,
)
mol_input = gr.Textbox(
label="Molecule Input",
interactive=False,
elem_id="mol_input",
show_copy_button=True,
visible=False,
)
canonical_smiles_output = gr.Textbox(
label="Canonical SMILES",
placeholder="Canonical representation will appear here",
lines=2,
interactive=False,
elem_id="canonical_smiles_output",
show_copy_button=True,
)
embedding_dimension = gr.Dropdown(
choices=SUPPORTED_EMBEDDING_DIMENSIONS,
value=EMBEDDING_DIMENSION,
label="Embedding Dimension",
elem_id="embedding_dimension",
)
with gr.Row():
search_btn = gr.Button(
"🔍 Search Molecule Database",
variant="primary",
elem_id="search_btn",
)
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
with gr.Column(scale=1):
gr.Markdown("### Search Results")
status_output = gr.Textbox(
label="Status",
interactive=False,
elem_id="status_output",
value="Ready - Draw a molecule or enter SMILES",
)
with gr.Accordion("Molecular Embedding Vector", open=False):
embedding_output = gr.JSON(
label="Molecular Embedding",
elem_id="embedding_output",
)
with gr.Accordion("Similar Molecules Response", open=False):
similar_molecules_output = gr.JSON(
label="API Response",
elem_id="similar_molecules_output",
)
molecule_image = gr.Image(label="Similar Molecules Grid", type="pil")
with gr.Tab("📊 Sample Molecules"):
gr.Markdown("""
Click any button below to load the molecule into the ChemWriter editor:
""")
with gr.Row():
with gr.Column(scale=1):
self._display_sample_molecules(SAMPLE_SMILES[::3])
with gr.Column(scale=1):
self._display_sample_molecules(SAMPLE_SMILES[1::3])
with gr.Column(scale=1):
self._display_sample_molecules(SAMPLE_SMILES[2::3])
# Update canonical SMILES when input changes
smiles_input.change(
fn=self.embedding_service.get_canonical_smiles,
inputs=[smiles_input],
outputs=[canonical_smiles_output],
api_name="get_canonical_smiles",
)
mol_input.change(
fn=self.embedding_service.get_smiles_from_mol_file,
inputs=[mol_input],
outputs=[smiles_input],
)
search_btn.click(
fn=self.handle_search,
inputs=[smiles_input, embedding_dimension],
outputs=[
embedding_output,
similar_molecules_output,
molecule_image,
status_output,
],
api_name="molecule_similarity_search_pipeline",
)
# Clear UI state
clear_btn.click(
fn=self.clear_all,
js="window.clearCW",
outputs=[
smiles_input,
canonical_smiles_output,
embedding_output,
similar_molecules_output,
molecule_image,
status_output,
],
)
gr.set_static_paths(paths=["src/static"])
return demo
if __name__ == "__main__":
app = App()
app.demo.launch(**LAUNCH_PARAMETERS)