Bug-Report-Analysis-Agent_ / evaluate_system.py
Devaharibabu's picture
Upload 5 files
83d51a6 verified
#!/usr/bin/env python3
"""
Bug Report Analysis Agent - Comprehensive Evaluation Script
============================================================
This script demonstrates and evaluates the RAG system's performance
on various types of bug reports and provides detailed analysis.
"""
import sys
import time
import json
from typing import Dict, List, Tuple
import pandas as pd
# Import the main system components
from app import (
rag_system, evaluator, suggestion_engine,
analyze_bug_report, format_similar_bugs,
format_relevant_code, format_evaluation_metrics
)
class SystemEvaluator:
"""Comprehensive evaluation of the Bug Report Analysis system"""
def __init__(self):
self.test_queries = [
{
"query": "Login form redirects back to login page after entering correct credentials",
"category": "Authentication",
"expected_components": ["login", "auth", "session"],
"description": "Classic authentication redirect issue"
},
{
"query": "Database connection times out during high traffic periods",
"category": "Database",
"expected_components": ["database", "connection", "timeout"],
"description": "Performance issue under load"
},
{
"query": "Email notifications for password reset are not being sent to users",
"category": "Email",
"expected_components": ["email", "smtp", "password"],
"description": "Email service functionality problem"
},
{
"query": "Submit button on contact form doesn't respond when clicked",
"category": "UI/Frontend",
"expected_components": ["button", "form", "javascript"],
"description": "Frontend interaction issue"
},
{
"query": "API returns 500 internal server error for user profile updates",
"category": "API",
"expected_components": ["api", "profile", "server"],
"description": "Backend API error"
},
{
"query": "Memory usage increases continuously when uploading large files",
"category": "Performance",
"expected_components": ["memory", "upload", "file"],
"description": "Memory leak in file handling"
},
{
"query": "Dashboard charts show incorrect data for monthly revenue reports",
"category": "Data/Analytics",
"expected_components": ["dashboard", "chart", "data"],
"description": "Data visualization accuracy issue"
},
{
"query": "User session expires too quickly causing frequent re-authentication",
"category": "Session Management",
"expected_components": ["session", "timeout", "authentication"],
"description": "Session timeout configuration issue"
}
]
def run_comprehensive_evaluation(self) -> Dict:
"""Run comprehensive evaluation of the system"""
print("๐Ÿš€ Starting Comprehensive Bug Report Analysis Evaluation")
print("=" * 70)
start_time = time.time()
results = {
"test_results": [],
"performance_metrics": {},
"quality_analysis": {},
"component_coverage": {},
"recommendations": []
}
# Test each query
for i, test_case in enumerate(self.test_queries, 1):
print(f"\n๐Ÿ“‹ Test Case {i}/{len(self.test_queries)}: {test_case['category']}")
print(f"Query: {test_case['query']}")
print("-" * 50)
# Run analysis
test_result = self.evaluate_single_query(test_case)
results["test_results"].append(test_result)
# Print summary
self.print_test_summary(test_result)
time.sleep(0.5) # Brief pause between tests
# Calculate overall metrics
results["performance_metrics"] = self.calculate_performance_metrics(results["test_results"])
results["quality_analysis"] = self.analyze_quality_patterns(results["test_results"])
results["component_coverage"] = self.analyze_component_coverage(results["test_results"])
results["recommendations"] = self.generate_recommendations(results)
total_time = time.time() - start_time
results["evaluation_time"] = total_time
# Print final report
self.print_final_report(results)
return results
def evaluate_single_query(self, test_case: Dict) -> Dict:
"""Evaluate a single test query"""
query = test_case["query"]
start_time = time.time()
# Run the analysis
try:
similar_bugs_output, relevant_code_output, suggestions, evaluation_output = analyze_bug_report(query)
# Get raw data for analysis
similar_bugs = rag_system.search_similar_bugs(query, k=5)
relevant_code = rag_system.search_relevant_code(query, k=5)
# Evaluate results
bug_evaluation = evaluator.evaluate_retrieval_relevance(query, similar_bugs)
suggestion_evaluation = evaluator.evaluate_suggestion_usefulness(query, suggestions)
processing_time = time.time() - start_time
return {
"test_case": test_case,
"processing_time": processing_time,
"similar_bugs": similar_bugs,
"relevant_code": relevant_code,
"suggestions": suggestions,
"bug_evaluation": bug_evaluation,
"suggestion_evaluation": suggestion_evaluation,
"outputs": {
"similar_bugs_output": similar_bugs_output,
"relevant_code_output": relevant_code_output,
"evaluation_output": evaluation_output
},
"success": True
}
except Exception as e:
return {
"test_case": test_case,
"processing_time": time.time() - start_time,
"error": str(e),
"success": False
}
def print_test_summary(self, result: Dict):
"""Print summary for a single test"""
if not result["success"]:
print(f"โŒ Error: {result['error']}")
return
bug_eval = result["bug_evaluation"]
suggestion_eval = result["suggestion_evaluation"]
print(f"โฑ๏ธ Processing Time: {result['processing_time']:.2f}s")
print(f"๐Ÿ” Similar Bugs Found: {bug_eval['result_count']}")
print(f"๐Ÿ“Š Retrieval Relevance: {bug_eval['relevance_score']:.3f}/1.0")
print(f"๐Ÿ› ๏ธ Suggestion Quality: {suggestion_eval['overall_usefulness']:.3f}/1.0")
# Quality indicator
overall_quality = (bug_eval['relevance_score'] + suggestion_eval['overall_usefulness']) / 2
if overall_quality >= 0.8:
quality_icon = "๐ŸŸข"
elif overall_quality >= 0.6:
quality_icon = "๐ŸŸก"
elif overall_quality >= 0.4:
quality_icon = "๐ŸŸ "
else:
quality_icon = "๐Ÿ”ด"
print(f"{quality_icon} Overall Quality: {overall_quality:.3f}/1.0")
def calculate_performance_metrics(self, test_results: List[Dict]) -> Dict:
"""Calculate overall performance metrics"""
successful_tests = [r for r in test_results if r["success"]]
if not successful_tests:
return {"error": "No successful tests to analyze"}
processing_times = [r["processing_time"] for r in successful_tests]
retrieval_scores = [r["bug_evaluation"]["relevance_score"] for r in successful_tests]
suggestion_scores = [r["suggestion_evaluation"]["overall_usefulness"] for r in successful_tests]
bug_counts = [r["bug_evaluation"]["result_count"] for r in successful_tests]
return {
"total_tests": len(test_results),
"successful_tests": len(successful_tests),
"success_rate": len(successful_tests) / len(test_results),
"average_processing_time": sum(processing_times) / len(processing_times),
"min_processing_time": min(processing_times),
"max_processing_time": max(processing_times),
"average_retrieval_score": sum(retrieval_scores) / len(retrieval_scores),
"average_suggestion_score": sum(suggestion_scores) / len(suggestion_scores),
"average_bugs_found": sum(bug_counts) / len(bug_counts),
"retrieval_score_std": pd.Series(retrieval_scores).std(),
"suggestion_score_std": pd.Series(suggestion_scores).std()
}
def analyze_quality_patterns(self, test_results: List[Dict]) -> Dict:
"""Analyze quality patterns across different categories"""
successful_tests = [r for r in test_results if r["success"]]
category_analysis = {}
for result in successful_tests:
category = result["test_case"]["category"]
if category not in category_analysis:
category_analysis[category] = {
"count": 0,
"retrieval_scores": [],
"suggestion_scores": [],
"processing_times": []
}
category_analysis[category]["count"] += 1
category_analysis[category]["retrieval_scores"].append(
result["bug_evaluation"]["relevance_score"]
)
category_analysis[category]["suggestion_scores"].append(
result["suggestion_evaluation"]["overall_usefulness"]
)
category_analysis[category]["processing_times"].append(
result["processing_time"]
)
# Calculate averages for each category
for category, data in category_analysis.items():
data["avg_retrieval"] = sum(data["retrieval_scores"]) / len(data["retrieval_scores"])
data["avg_suggestion"] = sum(data["suggestion_scores"]) / len(data["suggestion_scores"])
data["avg_processing_time"] = sum(data["processing_times"]) / len(data["processing_times"])
return category_analysis
def analyze_component_coverage(self, test_results: List[Dict]) -> Dict:
"""Analyze how well the system covers different components"""
component_coverage = {}
for result in test_results:
if not result["success"]:
continue
test_case = result["test_case"]
expected_components = test_case.get("expected_components", [])
# Check if similar bugs contain expected components
similar_bugs = result["similar_bugs"]
found_components = set()
for bug in similar_bugs:
component = bug.get("component", "").lower()
description = bug.get("description", "").lower()
title = bug.get("title", "").lower()
for expected in expected_components:
if expected.lower() in f"{component} {description} {title}":
found_components.add(expected)
component_coverage[test_case["category"]] = {
"expected": expected_components,
"found": list(found_components),
"coverage_ratio": len(found_components) / len(expected_components) if expected_components else 0
}
return component_coverage
def generate_recommendations(self, results: Dict) -> List[str]:
"""Generate recommendations based on evaluation results"""
recommendations = []
performance = results["performance_metrics"]
quality = results["quality_analysis"]
# Performance recommendations
if performance.get("average_processing_time", 0) > 3.0:
recommendations.append("Consider optimizing query processing time (currently > 3s average)")
if performance.get("success_rate", 1.0) < 0.95:
recommendations.append("Improve error handling and system reliability")
# Quality recommendations
avg_retrieval = performance.get("average_retrieval_score", 0)
avg_suggestion = performance.get("average_suggestion_score", 0)
if avg_retrieval < 0.7:
recommendations.append("Improve bug retrieval relevance (add more diverse training data)")
if avg_suggestion < 0.7:
recommendations.append("Enhance suggestion generation quality (refine fix templates)")
# Category-specific recommendations
for category, data in quality.items():
if data["avg_retrieval"] < 0.6:
recommendations.append(f"Improve {category} category retrieval performance")
if data["avg_suggestion"] < 0.6:
recommendations.append(f"Enhance {category} category suggestion quality")
if not recommendations:
recommendations.append("System performance is excellent across all metrics!")
return recommendations
def print_final_report(self, results: Dict):
"""Print comprehensive final evaluation report"""
print("\n" + "=" * 70)
print("๐Ÿ“Š COMPREHENSIVE EVALUATION REPORT")
print("=" * 70)
# Performance Summary
perf = results["performance_metrics"]
print(f"\n๐Ÿš€ PERFORMANCE SUMMARY")
print(f"{'Total Tests:':<25} {perf['total_tests']}")
print(f"{'Success Rate:':<25} {perf['success_rate']:.1%}")
print(f"{'Avg Processing Time:':<25} {perf['average_processing_time']:.2f}s")
print(f"{'Avg Retrieval Score:':<25} {perf['average_retrieval_score']:.3f}/1.0")
print(f"{'Avg Suggestion Score:':<25} {perf['average_suggestion_score']:.3f}/1.0")
print(f"{'Avg Bugs Found:':<25} {perf['average_bugs_found']:.1f}")
# Quality Analysis by Category
print(f"\n๐Ÿ“ˆ QUALITY ANALYSIS BY CATEGORY")
quality = results["quality_analysis"]
for category, data in quality.items():
print(f"\n{category}:")
print(f" Retrieval: {data['avg_retrieval']:.3f} | Suggestions: {data['avg_suggestion']:.3f}")
# Component Coverage
print(f"\n๐ŸŽฏ COMPONENT COVERAGE ANALYSIS")
coverage = results["component_coverage"]
for category, data in coverage.items():
coverage_pct = data['coverage_ratio'] * 100
print(f"{category}: {coverage_pct:.0f}% coverage ({len(data['found'])}/{len(data['expected'])} components)")
# Recommendations
print(f"\n๐Ÿ’ก RECOMMENDATIONS")
for i, rec in enumerate(results["recommendations"], 1):
print(f"{i}. {rec}")
# Overall Rating
overall_score = (perf['average_retrieval_score'] + perf['average_suggestion_score']) / 2
if overall_score >= 0.8:
rating = "๐ŸŸข EXCELLENT"
elif overall_score >= 0.7:
rating = "๐ŸŸก GOOD"
elif overall_score >= 0.6:
rating = "๐ŸŸ  FAIR"
else:
rating = "๐Ÿ”ด NEEDS IMPROVEMENT"
print(f"\nโญ OVERALL SYSTEM RATING: {rating} ({overall_score:.3f}/1.0)")
print(f"๐Ÿ“… Evaluation completed in {results['evaluation_time']:.1f} seconds")
print("=" * 70)
def save_results(self, results: Dict, filename: str = "evaluation_results.json"):
"""Save evaluation results to file"""
try:
# Convert numpy types to native Python types for JSON serialization
def convert_types(obj):
if hasattr(obj, 'item'): # numpy scalar
return obj.item()
elif isinstance(obj, dict):
return {k: convert_types(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [convert_types(item) for item in obj]
else:
return obj
serializable_results = convert_types(results)
with open(filename, 'w') as f:
json.dump(serializable_results, f, indent=2, default=str)
print(f"๐Ÿ“ Results saved to {filename}")
except Exception as e:
print(f"โŒ Error saving results: {e}")
def run_interactive_demo():
"""Run an interactive demonstration of the system"""
print("๐ŸŽฎ Interactive Bug Report Analysis Demo")
print("Enter bug descriptions to see real-time analysis")
print("Type 'quit' to exit\n")
while True:
try:
query = input("๐Ÿž Describe a bug: ").strip()
if query.lower() in ['quit', 'exit', 'q']:
print("๐Ÿ‘‹ Thanks for trying the Bug Report Analysis Agent!")
break
if not query:
continue
print("\n๐Ÿ” Analyzing...")
start_time = time.time()
similar_bugs_output, relevant_code_output, suggestions, evaluation_output = analyze_bug_report(query)
processing_time = time.time() - start_time
print(f"โฑ๏ธ Analysis completed in {processing_time:.2f} seconds\n")
print("๐Ÿ“‹ RESULTS:")
print("-" * 50)
print(similar_bugs_output[:500] + "..." if len(similar_bugs_output) > 500 else similar_bugs_output)
print("\n" + evaluation_output)
print("\n" + "="*50 + "\n")
except KeyboardInterrupt:
print("\n๐Ÿ‘‹ Goodbye!")
break
except Exception as e:
print(f"โŒ Error: {e}")
if __name__ == "__main__":
evaluator_instance = SystemEvaluator()
if len(sys.argv) > 1 and sys.argv[1] == "--demo":
run_interactive_demo()
else:
# Run comprehensive evaluation
results = evaluator_instance.run_comprehensive_evaluation()
evaluator_instance.save_results(results)
print("\n๐ŸŽฏ To run interactive demo: python evaluate_system.py --demo")