File size: 6,685 Bytes
3b9b6a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import streamlit as st
import requests
import os
from dotenv import load_dotenv
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.schema import AgentAction, AgentFinish, HumanMessage
from langchain.prompts import BaseChatPromptTemplate
from langchain.tools import Tool
from langchain.memory import ConversationBufferWindowMemory
from transformers import pipeline
from typing import List, Union
import re

# Load environment variables from .env
load_dotenv()

# Job API keys and endpoints
JOB_API_KEY = os.getenv("JOB_API_KEY")  # Add your job API key here if required
JOBS_API_URL = "https://jobs.github.com/positions.json"  # Example API endpoint (replace with an actual one)

# Function to find global job openings
def find_global_jobs():
    try:
        response = requests.get(JOBS_API_URL)
        if response.status_code == 200:
            jobs = response.json()
            return [
                {
                    "title": job["title"],
                    "company": job["company"],
                    "location": job["location"],
                    "url": job["url"]
                } for job in jobs
            ]
        else:
            return {"error": "Unable to fetch job data."}
    except Exception as e:
        return {"error": str(e)}

# Function to find remote jobs
def find_remote_jobs():
    try:
        response = requests.get(f"{JOBS_API_URL}?location=remote")
        if response.status_code == 200:
            jobs = response.json()
            return [
                {
                    "title": job["title"],
                    "company": job["company"],
                    "url": job["url"]
                } for job in jobs
            ]
        else:
            return {"error": "Unable to fetch remote job data."}
    except Exception as e:
        return {"error": str(e)}

# Function to find jobs near a location
def find_jobs_near_location(location):
    try:
        response = requests.get(f"{JOBS_API_URL}?location={location}")
        if response.status_code == 200:
            jobs = response.json()
            return [
                {
                    "title": job["title"],
                    "company": job["company"],
                    "location": job["location"],
                    "url": job["url"]
                } for job in jobs
            ]
        else:
            return {"error": "Unable to fetch job data for location."}
    except Exception as e:
        return {"error": str(e)}

# Define LangChain tools
global_jobs_tool = Tool(
    name="Global Job Finder",
    func=find_global_jobs,
    description="Find all job openings around the world."
)

remote_jobs_tool = Tool(
    name="Remote Job Finder",
    func=find_remote_jobs,
    description="Find remote job openings."
)

local_jobs_tool = Tool(
    name="Local Job Finder",
    func=find_jobs_near_location,
    description="Find job openings near a specified location. Input should be a city or region name."
)

# Set up the tools
tools = [
    global_jobs_tool,
    remote_jobs_tool,
    local_jobs_tool
]

# Set up a prompt template with history
template_with_history = """You are JobSearchGPT, an AI assistant specialized in finding job openings. Answer the following questions as best you can. You have access to the following tools:

{tools}

Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

Begin! Remember to give detailed, informative answers

Previous conversation history:
{history}

New question: {input}
{agent_scratchpad}"""

# Set up the prompt template
class CustomPromptTemplate(BaseChatPromptTemplate):
    template: str
    tools: List[Tool]

    def format_messages(self, **kwargs) -> str:
        intermediate_steps = kwargs.pop("intermediate_steps")
        thoughts = ""
        for action, observation in intermediate_steps:
            thoughts += action.log
            thoughts += f"\nObservation: {observation}\nThought: "

        kwargs["agent_scratchpad"] = thoughts
        kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
        kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
        formatted = self.template.format(**kwargs)
        return [HumanMessage(content=formatted)]

prompt_with_history = CustomPromptTemplate(
    template=template_with_history,
    tools=tools,
    input_variables=["input", "intermediate_steps", "history"]
)

# Custom output parser
class CustomOutputParser(AgentOutputParser):
    def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
        if "Final Answer:" in llm_output:
            return AgentFinish(
                return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
                log=llm_output,
            )
        regex = r"Action: (.*?)[\n]*Action Input:[\s]*(.*)"
        match = re.search(regex, llm_output, re.DOTALL)
        if not match:
            raise ValueError(f"Could not parse LLM output: `{llm_output}`")
        action = match.group(1).strip()
        action_input = match.group(2)
        return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)

output_parser = CustomOutputParser()

# Initialize HuggingFace pipeline
pipe = pipeline("text-generation", model="gpt-neo-2.7B")  # Replace with a suitable model

# LLM chain
llm_chain = LLMChain(llm=pipe, prompt=prompt_with_history)
tool_names = [tool.name for tool in tools]
agent = LLMSingleActionAgent(
    llm_chain=llm_chain, 
    output_parser=output_parser,
    stop=["\nObservation:"], 
    allowed_tools=tool_names
)

memory = ConversationBufferWindowMemory(k=2)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory)

# Streamlit app
st.title("Job Search Helper Agent")

query = st.text_input("Enter your query:")

if st.button("Submit"):
    if query:
        st.write("Debug: User Query ->", query)
        with st.spinner("Processing..."):
            try:
                # Run the agent and get the response
                response = agent_executor.run(query)  # Correct method is `run()`
                st.success("Response:")
                st.write(response)
            except Exception as e:
                st.error(f"An error occurred: {e}")