Spaces:
Sleeping
Sleeping
File size: 2,853 Bytes
2817176 c10cb07 814a015 9604a21 2817176 814a015 c10cb07 814a015 c10cb07 814a015 c10cb07 814a015 c10cb07 2817176 c10cb07 2817176 c10cb07 2817176 c10cb07 6318c1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
# Replace 'your_huggingface_token' with your actual Hugging Face access token
access_token = os.getenv('token')
# Initialize the tokenizer and model with the Hugging Face access token
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", use_auth_token=access_token)
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b-it",
torch_dtype=torch.bfloat16,
use_auth_token=access_token
)
model.eval() # Set the model to evaluation mode
# Initialize the inference client (if needed for other API-based tasks)
client = InferenceClient(provider="together",token=access_token)
def conversation_predict(input_text):
"""Generate a response for single-turn input using the model."""
# Tokenize the input text
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
# Generate a response with the model
outputs = model.generate(input_ids, max_new_tokens=2048)
# Decode and return the generated response
return tokenizer.decode(outputs[0], skip_special_tokens=True)
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
"""Generate a response for a multi-turn chat conversation."""
# Prepare the messages in the correct format for the API
messages = [{"role": "system", "content": system_message}]
for user_input, assistant_reply in history:
if user_input:
messages.append({"role": "user", "content": user_input})
if assistant_reply:
messages.append({"role": "assistant", "content": assistant_reply})
messages.append({"role": "user", "content": message})
response = ""
# Stream response tokens from the chat completion API
for message_chunk in client.chat_completion(
model = "google/gemma-2b-it",
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message_chunk["choices"][0]["delta"].get("content", "")
response += token
yield response
# Create a Gradio ChatInterface demo
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch(share=True) |