Dhahlan2000 commited on
Commit
c10cb07
·
verified ·
1 Parent(s): 33f75cd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -26
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import gradio as gr
 
2
  from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import torch
4
  import os
@@ -6,41 +7,84 @@ import os
6
  # Replace 'your_huggingface_token' with your actual Hugging Face access token
7
  access_token = os.getenv('token')
8
 
9
- # Load the tokenizer and model
10
  tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", use_auth_token=access_token)
11
  model = AutoModelForCausalLM.from_pretrained(
12
  "google/gemma-2b-it",
13
  torch_dtype=torch.bfloat16,
14
- device_map="auto",
15
- use_auth_token=access_token# Automatically map to GPU if available
16
  )
 
17
 
18
- # Define generation function
19
- def generate_text(prompt, max_tokens=200, temperature=0.7, top_p=0.9):
20
- inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
21
- outputs = model.generate(
22
- **inputs,
23
- max_new_tokens=max_tokens,
24
- do_sample=True,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  temperature=temperature,
26
  top_p=top_p,
27
- pad_token_id=tokenizer.eos_token_id
28
- )
29
- return tokenizer.decode(outputs[0], skip_special_tokens=True)
 
30
 
31
- # Define Gradio interface
32
- interface = gr.Interface(
33
- fn=generate_text,
34
- inputs=[
35
- gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2),
36
- gr.Slider(50, 512, value=200, label="Max Tokens"),
37
- gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature"),
38
- gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)")
 
 
 
 
 
 
39
  ],
40
- outputs=gr.Textbox(label="Generated Text"),
41
- title="Gemma-2B Text Generator",
42
- description="Enter a prompt and let Google's Gemma-2B-IT model generate a response."
43
  )
44
 
45
- # Launch the app
46
- interface.launch()
 
 
 
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
  import torch
5
  import os
 
7
  # Replace 'your_huggingface_token' with your actual Hugging Face access token
8
  access_token = os.getenv('token')
9
 
10
+ # Initialize the tokenizer and model with the Hugging Face access token
11
  tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", use_auth_token=access_token)
12
  model = AutoModelForCausalLM.from_pretrained(
13
  "google/gemma-2b-it",
14
  torch_dtype=torch.bfloat16,
15
+ use_auth_token=access_token
 
16
  )
17
+ model.eval() # Set the model to evaluation mode
18
 
19
+ # Initialize the inference client (if needed for other API-based tasks)
20
+ client = InferenceClient(provider="together",token=access_token)
21
+
22
+ def conversation_predict(input_text):
23
+ """Generate a response for single-turn input using the model."""
24
+ # Tokenize the input text
25
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids
26
+
27
+ # Generate a response with the model
28
+ outputs = model.generate(input_ids, max_new_tokens=2048)
29
+
30
+ # Decode and return the generated response
31
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
32
+
33
+ def respond(
34
+ message: str,
35
+ history: list[tuple[str, str]],
36
+ system_message: str,
37
+ max_tokens: int,
38
+ temperature: float,
39
+ top_p: float,
40
+ ):
41
+ """Generate a response for a multi-turn chat conversation."""
42
+ # Prepare the messages in the correct format for the API
43
+ messages = [{"role": "system", "content": system_message}]
44
+
45
+ for user_input, assistant_reply in history:
46
+ if user_input:
47
+ messages.append({"role": "user", "content": user_input})
48
+ if assistant_reply:
49
+ messages.append({"role": "assistant", "content": assistant_reply})
50
+
51
+ messages.append({"role": "user", "content": message})
52
+
53
+ response = ""
54
+
55
+ # Stream response tokens from the chat completion API
56
+ for message_chunk in client.chat_completion(
57
+ model = "google/gemma-2b-it",
58
+ messages=messages,
59
+ max_tokens=max_tokens,
60
+ stream=True,
61
  temperature=temperature,
62
  top_p=top_p,
63
+ ):
64
+ token = message_chunk["choices"][0]["delta"].get("content", "")
65
+ response += token
66
+ yield response
67
 
68
+ # Create a Gradio ChatInterface demo
69
+ demo = gr.ChatInterface(
70
+ fn=respond,
71
+ additional_inputs=[
72
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
73
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
74
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
75
+ gr.Slider(
76
+ minimum=0.1,
77
+ maximum=1.0,
78
+ value=0.95,
79
+ step=0.05,
80
+ label="Top-p (nucleus sampling)",
81
+ ),
82
  ],
 
 
 
83
  )
84
 
85
+ if __name__ == "__main__":
86
+ demo.launch(share=True)
87
+
88
+
89
+
90
+ do not stream the output