Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
import os
|
@@ -7,78 +6,41 @@ import os
|
|
7 |
# Replace 'your_huggingface_token' with your actual Hugging Face access token
|
8 |
access_token = os.getenv('token')
|
9 |
|
10 |
-
#
|
11 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", use_auth_token=access_token)
|
12 |
model = AutoModelForCausalLM.from_pretrained(
|
13 |
"google/gemma-2b-it",
|
14 |
torch_dtype=torch.bfloat16,
|
15 |
-
|
|
|
16 |
)
|
17 |
-
model.eval() # Set the model to evaluation mode
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
# Generate a response with the model
|
28 |
-
outputs = model.generate(input_ids, max_new_tokens=2048)
|
29 |
-
|
30 |
-
# Decode and return the generated response
|
31 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
32 |
-
|
33 |
-
def respond(
|
34 |
-
message: str,
|
35 |
-
history: list[tuple[str, str]],
|
36 |
-
system_message: str,
|
37 |
-
max_tokens: int,
|
38 |
-
temperature: float,
|
39 |
-
top_p: float,
|
40 |
-
):
|
41 |
-
"""Generate a response for a multi-turn chat conversation."""
|
42 |
-
# Prepare the messages in the correct format for the API
|
43 |
-
messages = [{"role": "system", "content": system_message}]
|
44 |
-
|
45 |
-
for user_input, assistant_reply in history:
|
46 |
-
if user_input:
|
47 |
-
messages.append({"role": "user", "content": user_input})
|
48 |
-
if assistant_reply:
|
49 |
-
messages.append({"role": "assistant", "content": assistant_reply})
|
50 |
-
|
51 |
-
messages.append({"role": "user", "content": message})
|
52 |
-
|
53 |
-
# Get the complete response at once (no streaming)
|
54 |
-
response = client.chat_completion(
|
55 |
-
model="google/gemma-2b-it",
|
56 |
-
messages=messages,
|
57 |
-
max_tokens=max_tokens,
|
58 |
-
stream=False,
|
59 |
temperature=temperature,
|
60 |
top_p=top_p,
|
|
|
61 |
)
|
62 |
-
|
63 |
-
# Extract and return the full response
|
64 |
-
return response["choices"][0]["message"]["content"]
|
65 |
|
66 |
-
#
|
67 |
-
|
68 |
-
fn=
|
69 |
-
|
70 |
-
gr.Textbox(
|
71 |
-
gr.Slider(
|
72 |
-
gr.Slider(
|
73 |
-
gr.Slider(
|
74 |
-
minimum=0.1,
|
75 |
-
maximum=1.0,
|
76 |
-
value=0.95,
|
77 |
-
step=0.05,
|
78 |
-
label="Top-p (nucleus sampling)",
|
79 |
-
),
|
80 |
],
|
|
|
|
|
|
|
81 |
)
|
82 |
|
83 |
-
|
84 |
-
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
import os
|
|
|
6 |
# Replace 'your_huggingface_token' with your actual Hugging Face access token
|
7 |
access_token = os.getenv('token')
|
8 |
|
9 |
+
# Load the tokenizer and model
|
10 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", use_auth_token=access_token)
|
11 |
model = AutoModelForCausalLM.from_pretrained(
|
12 |
"google/gemma-2b-it",
|
13 |
torch_dtype=torch.bfloat16,
|
14 |
+
device_map="auto",
|
15 |
+
use_auth_token=access_token# Automatically map to GPU if available
|
16 |
)
|
|
|
17 |
|
18 |
+
# Define generation function
|
19 |
+
def generate_text(prompt, max_tokens=200, temperature=0.7, top_p=0.9):
|
20 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
21 |
+
outputs = model.generate(
|
22 |
+
**inputs,
|
23 |
+
max_new_tokens=max_tokens,
|
24 |
+
do_sample=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
temperature=temperature,
|
26 |
top_p=top_p,
|
27 |
+
pad_token_id=tokenizer.eos_token_id
|
28 |
)
|
29 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
30 |
|
31 |
+
# Define Gradio interface
|
32 |
+
interface = gr.Interface(
|
33 |
+
fn=generate_text,
|
34 |
+
inputs=[
|
35 |
+
gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2),
|
36 |
+
gr.Slider(50, 512, value=200, label="Max Tokens"),
|
37 |
+
gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature"),
|
38 |
+
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)")
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
],
|
40 |
+
outputs=gr.Textbox(label="Generated Text"),
|
41 |
+
title="Gemma-2B Text Generator",
|
42 |
+
description="Enter a prompt and let Google's Gemma-2B-IT model generate a response."
|
43 |
)
|
44 |
|
45 |
+
# Launch the app
|
46 |
+
interface.launch()
|