File size: 4,184 Bytes
e730afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
File: vlm.py
Description: Vision language model utility functions.
Author: Didier Guillevic
Date: 2025-05-08
"""

from transformers import AutoProcessor, AutoModelForImageTextToText

#
# Load the model: OPEA/Mistral-Small-3.1-24B-Instruct-2503-int4-AutoRound-awq-sym
#
model_id = "OPEA/Mistral-Small-3.1-24B-Instruct-2503-int4-AutoRound-awq-sym"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
    model_id, 
    _attn_implementation="flash_attention_2",
    torch_dtype=torch.bfloat16
).to(device)

#
# Encode images as base64
#
def encode_image(image_path):
    """Encode the image to base64."""
    try:
        with open(image_path, "rb") as image_file:
            return base64.b64encode(image_file.read()).decode('utf-8')
    except FileNotFoundError:
        print(f"Error: The file {image_path} was not found.")
        return None
    except Exception as e:  # Added general exception handling
        print(f"Error: {e}")
        return None


#
# Build messages
#
def build_messages(message: dict, history: list[tuple]):
    """Build messages given message & history from a **multimodal** chat interface.
    Args:
        message: dictionary with keys: 'text', 'files'
        history: list of tuples with (message, response)
    
    Returns:
        list of messages (to be sent to the model)
    """
    logger.info(f"{message=}")
    logger.info(f"{history=}")
    # Get the user's text and list of images
    user_text = message.get("text", "")
    user_images = message.get("files", [])  # List of images

    # Build the message list including history
    messages = []
    combined_user_input = [] # Combine images and text if found in same turn.
    for user_turn, bot_turn in history:
        if isinstance(user_turn, tuple):  # Image input
            image_content = [
                {
                    "type": "image_url",
                    "image_url": f"data:image/jpeg;base64,{encode_image(image)}"
                } for image in user_turn
            ]
            combined_user_input.extend(image_content)
        elif isinstance(user_turn, str): # Text input
            combined_user_input.append({"type": "text", "text": user_turn})
        if combined_user_input and bot_turn:
            messages.append({'role': 'user', 'content': combined_user_input})
            messages.append({'role': 'assistant', 'content': [{"type": "text", "text": bot_turn}]})
            combined_user_input = [] #reset the combined user input.
    
    # Build the user message's content from the provided message
    user_content = []
    if user_text:
        user_content.append({"type": "text", "text": user_text})
    for image in user_images:
        user_content.append(
            {
                "type": "image_url",
                "image_url": f"data:image/jpeg;base64,{encode_image(image)}"
            }
        )
    
    messages.append({'role': 'user', 'content': user_content})
    logger.info(f"{messages=}")

    return messages

#
# stream response
#
@spaces.GPU
@torch.inference_mode()
def stream_response(
        messages: list[dict],
        max_new_tokens: int=1_024,
        temperature: float=0.15
    ):
    """Stream the model's response to the chat interface.
    
    Args:
        messages: list of messages to send to the model
    """
    # Generate model's response
    inputs = processor.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt",
    ).to(model.device, dtype=torch.bfloat16)
    
    # Generate
    streamer = TextIteratorStreamer(
        processor, skip_prompt=True, skip_special_tokens=True)
    generation_args = dict(
        inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=0.9,
        do_sample=True
    )

    thread = Thread(target=model.generate, kwargs=generation_args)
    thread.start()

    partial_message = ""
    for new_text in streamer:
        partial_message += new_text
        yield partial_message