Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,541 Bytes
e730afb 4fe7de8 39eaec8 6485df8 87fa838 39eaec8 0afdc15 e730afb 4fe7de8 e730afb 1136305 49e0d0c 4fe7de8 e730afb f141d7a 21e5df5 f141d7a 21e5df5 f141d7a 21e5df5 f141d7a 6f6099a e730afb 6f6099a e730afb 6f6099a e730afb c6820b5 e730afb 6f6099a f141d7a e730afb f141d7a e730afb 49e0d0c e730afb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
"""
File: vlm.py
Description: Vision language model utility functions.
Author: Didier Guillevic
Date: 2025-05-08
"""
from transformers import AutoProcessor
from transformers import Mistral3ForConditionalGeneration
from transformers import TextIteratorStreamer
from threading import Thread
import re
import time
import torch
import base64
import spaces
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
#
# Load the model: OPEA/Mistral-Small-3.1-24B-Instruct-2503-int4-AutoRound-awq-sym
#
model_id = "OPEA/Mistral-Small-3.1-24B-Instruct-2503-int4-AutoRound-awq-sym"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
processor = AutoProcessor.from_pretrained(model_id)
model = Mistral3ForConditionalGeneration.from_pretrained(
model_id,
#_attn_implementation="flash_attention_2",
torch_dtype=torch.float16
).eval().to(device)
#
# Encode images as base64
#
def encode_image(image_path):
"""Encode the image to base64."""
try:
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
except FileNotFoundError:
print(f"Error: The file {image_path} was not found.")
return None
except Exception as e: # Added general exception handling
print(f"Error: {e}")
return None
#
# Build messages
#
def normalize_message_content(msg: dict) -> dict:
content = msg.get("content")
# Case 1: Already in expected format
if isinstance(content, list) and all(isinstance(item, dict) for item in content):
return {"role": msg["role"], "content": content}
# Case 2: String (assume text)
if isinstance(content, str):
return {"role": msg["role"], "content": [{"type": "text", "text": content}]}
# Case 3: Tuple with image path(s)
if isinstance(content, tuple):
return {
"role": msg["role"],
"content": [
{"type": "image", "image": encode_image(path)} # your `encode_image()` function
for path in content if isinstance(path, str)
]
}
logger.warning(f"Unexpected content format in message: {msg}")
return {"role": msg["role"], "content": [{"type": "text", "text": str(content)}]}
def build_messages(message: dict, history: list[dict]):
"""Build messages given message & history from a **multimodal** chat interface.
Args:
message: dictionary with keys: 'text', 'files'
history: list of dictionaries
Returns:
list of messages (to be sent to the model)
"""
logger.info(f"{message=}")
logger.info(f"{history=}")
# Get the user's text and list of images
user_text = message.get("text", "")
user_images = message.get("files", []) # List of images
# Build the user message's content from the provided message
user_content = []
if user_text:
user_content.append({"type": "text", "text": user_text})
for image in user_images:
user_content.append(
{
"type": "image",
"image": f"data:image/jpeg;base64,{encode_image(image)}"
}
)
# Normalize existing history content
messages = [normalize_message_content(msg) for msg in history]
# Append new user message
messages.append({'role': 'user', 'content': user_content})
logger.info(f"{messages=}")
return messages
#
# stream response
#
@spaces.GPU
@torch.inference_mode()
def stream_response(
messages: list[dict],
max_new_tokens: int=1_024,
temperature: float=0.15
):
"""Stream the model's response to the chat interface.
Args:
messages: list of messages to send to the model
"""
# Generate model's response
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device, dtype=torch.float16)
# Generate
streamer = TextIteratorStreamer(
processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=0.9,
do_sample=True
)
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
partial_message = ""
for new_text in streamer:
partial_message += new_text
yield partial_message
|