Didier's picture
Update vlm.py
21e5df5 verified
"""
File: vlm.py
Description: Vision language model utility functions.
Author: Didier Guillevic
Date: 2025-05-08
"""
from transformers import AutoProcessor
from transformers import Mistral3ForConditionalGeneration
from transformers import TextIteratorStreamer
from threading import Thread
import re
import time
import torch
import base64
import spaces
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
#
# Load the model: OPEA/Mistral-Small-3.1-24B-Instruct-2503-int4-AutoRound-awq-sym
#
model_id = "OPEA/Mistral-Small-3.1-24B-Instruct-2503-int4-AutoRound-awq-sym"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
processor = AutoProcessor.from_pretrained(model_id)
model = Mistral3ForConditionalGeneration.from_pretrained(
model_id,
#_attn_implementation="flash_attention_2",
torch_dtype=torch.float16
).eval().to(device)
#
# Encode images as base64
#
def encode_image(image_path):
"""Encode the image to base64."""
try:
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
except FileNotFoundError:
print(f"Error: The file {image_path} was not found.")
return None
except Exception as e: # Added general exception handling
print(f"Error: {e}")
return None
#
# Build messages
#
def normalize_message_content(msg: dict) -> dict:
content = msg.get("content")
# Case 1: Already in expected format
if isinstance(content, list) and all(isinstance(item, dict) for item in content):
return {"role": msg["role"], "content": content}
# Case 2: String (assume text)
if isinstance(content, str):
return {"role": msg["role"], "content": [{"type": "text", "text": content}]}
# Case 3: Tuple with image path(s)
if isinstance(content, tuple):
return {
"role": msg["role"],
"content": [
{"type": "image", "image": encode_image(path)} # your `encode_image()` function
for path in content if isinstance(path, str)
]
}
logger.warning(f"Unexpected content format in message: {msg}")
return {"role": msg["role"], "content": [{"type": "text", "text": str(content)}]}
def build_messages(message: dict, history: list[dict]):
"""Build messages given message & history from a **multimodal** chat interface.
Args:
message: dictionary with keys: 'text', 'files'
history: list of dictionaries
Returns:
list of messages (to be sent to the model)
"""
logger.info(f"{message=}")
logger.info(f"{history=}")
# Get the user's text and list of images
user_text = message.get("text", "")
user_images = message.get("files", []) # List of images
# Build the user message's content from the provided message
user_content = []
if user_text:
user_content.append({"type": "text", "text": user_text})
for image in user_images:
user_content.append(
{
"type": "image",
"image": f"data:image/jpeg;base64,{encode_image(image)}"
}
)
# Normalize existing history content
messages = [normalize_message_content(msg) for msg in history]
# Append new user message
messages.append({'role': 'user', 'content': user_content})
logger.info(f"{messages=}")
return messages
#
# stream response
#
@spaces.GPU
@torch.inference_mode()
def stream_response(
messages: list[dict],
max_new_tokens: int=1_024,
temperature: float=0.15
):
"""Stream the model's response to the chat interface.
Args:
messages: list of messages to send to the model
"""
# Generate model's response
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device, dtype=torch.float16)
# Generate
streamer = TextIteratorStreamer(
processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=0.9,
do_sample=True
)
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
partial_message = ""
for new_text in streamer:
partial_message += new_text
yield partial_message