Spaces:
Runtime error
Runtime error
File size: 1,368 Bytes
f85da4b 1627a17 0277979 f85da4b 4af3eba f85da4b 1627a17 38e25a7 f85da4b 38e25a7 c1c1c66 38e25a7 1627a17 f85da4b 9afb8c5 f85da4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
# Workaround to install the lib without "setup.py"
import sys
from git import Repo
Repo.clone_from("https://github.com/dimitreOliveira/hub.git", "./hub")
sys.path.append("/hub")
import gradio as gr
from hub.tensorflow_hub.hf_utils import pull_from_hub
import requests
# Download human-readable labels for ImageNet.
response = requests.get("https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt")
labels = [x for x in response.text.split("\n") if x != ""]
model = pull_from_hub(repo_id="Dimitre/mobilenet_v3_small")
def preprocess(image):
image = image.reshape((-1, 224, 224, 3)) # (batch_size, height, width, num_channels)
return image / 255.
def postprocess(prediction):
# return {labels[i]: prediction[i] for i in range(len(labels))}
return {labels[i]: 0 for i in range(len(labels))}
def predict_fn(image):
image = preprocess(image)
prediction = model(image)
print('****************')
print(prediction)
print('****************')
print(prediction[0])
print('****************')
print(prediction[0].numpy())
print('****************')
print(prediction.numpy())
scores = postprocess(prediction)
return scores
iface = gr.Interface(fn=predict_fn,
inputs=gr.Image(shape=(224, 224)),
outputs=gr.Label(num_top_classes=5))
iface.launch() |