Spaces:
Sleeping
Sleeping
File size: 13,122 Bytes
ad493ec fb65e18 ad493ec fb65e18 ad493ec fb65e18 ad493ec 4d8c40c 929da88 6d576da 2bde17b 6d576da 2bde17b fb65e18 9308632 fb65e18 731490a 6d576da e029416 731490a fb65e18 6d576da fb65e18 6d576da fb65e18 731490a 6d576da fb65e18 6d576da 731490a 6d576da fb65e18 731490a 6d576da 731490a 6d576da e029416 731490a fb65e18 929da88 ad493ec fb65e18 ad493ec fb65e18 ad493ec fb65e18 ad493ec 4d8c40c fb65e18 ad493ec fb65e18 ad493ec fb65e18 ad493ec fb65e18 ad493ec 4d8c40c ad493ec 4d8c40c fd9e569 4d8c40c fd9e569 4d8c40c fd9e569 4d8c40c fd9e569 4d8c40c fd9e569 4d8c40c ad493ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import typing
import types # fusion of forward() of Wav2Vec2
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import spaces
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel
import audiofile
import audresample
device = 0 if torch.cuda.is_available() else "cpu"
duration = 2 # limit processing of audio
age_gender_model_name = "audeering/wav2vec2-large-robust-24-ft-age-gender"
expression_model_name = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim"
class AgeGenderHead(nn.Module):
r"""Age-gender model head."""
def __init__(self, config, num_labels):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class AgeGenderModel(Wav2Vec2PreTrainedModel):
r"""Age-gender recognition model."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.age = AgeGenderHead(config, 1)
self.gender = AgeGenderHead(config, 3)
self.init_weights()
def forward(
self,
frozen_cnn7,
):
hidden_states = self.wav2vec2(frozen_cnn7=frozen_cnn7) # runs only Transformer layers
hidden_states = torch.mean(hidden_states, dim=1)
logits_age = self.age(hidden_states)
logits_gender = torch.softmax(self.gender(hidden_states), dim=1)
return hidden_states, logits_age, logits_gender
# AgeGenderModel.forward() is switched to accept computed frozen CNN7 features from ExpressioNmodel
def _forward(
self,
frozen_cnn7=None, # CNN7 fetures of wav2vec2 calc. from CNN7 feature extractor (once)
attention_mask=None):
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(
frozen_cnn7.shape[1], attention_mask, add_adapter=False
)
hidden_states, _ = self.wav2vec2.feature_projection(frozen_cnn7)
hidden_states = self.wav2vec2.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
)[0]
return hidden_states
def _forward_and_cnn7(
self,
input_values,
attention_mask=None):
frozen_cnn7 = self.wav2vec2.feature_extractor(input_values)
frozen_cnn7 = frozen_cnn7.transpose(1, 2)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self.wav2vec2._get_feature_vector_attention_mask(
frozen_cnn7.shape[1], attention_mask, add_adapter=False
)
hidden_states, _ = self.wav2vec2.feature_projection(frozen_cnn7) # grad=True non frozen
hidden_states = self.wav2vec2.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
)[0]
return hidden_states, frozen_cnn7 #feature_proj is trainable thus we have to access the frozen_cnn7 before projection layer
class ExpressionHead(nn.Module):
r"""Expression model head."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class ExpressionModel(Wav2Vec2PreTrainedModel):
r"""speech expression model."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.classifier = ExpressionHead(config)
self.init_weights()
def forward(self, input_values):
hidden_states, frozen_cnn7 = self.wav2vec2(input_values)
hidden_states = torch.mean(hidden_states, dim=1)
logits = self.classifier(hidden_states)
return hidden_states, logits, frozen_cnn7
# Load models from hub
age_gender_processor = Wav2Vec2Processor.from_pretrained(age_gender_model_name)
age_gender_model = AgeGenderModel.from_pretrained(age_gender_model_name)
expression_processor = Wav2Vec2Processor.from_pretrained(expression_model_name)
expression_model = ExpressionModel.from_pretrained(expression_model_name)
# Emotion Calc. CNN features
age_gender_model.wav2vec2.forward = types.MethodType(_forward, age_gender_model)
expression_model.wav2vec2.forward = types.MethodType(_forward_and_cnn7, expression_model)
def process_func(x: np.ndarray, sampling_rate: int) -> typing.Tuple[str, dict, str]:
# batch audio
y = expression_processor(x, sampling_rate=sampling_rate)
y = y['input_values'][0]
y = y.reshape(1, -1)
y = torch.from_numpy(y).to(device)
# run through expression model
with torch.no_grad():
_, logits_expression, frozen_cnn7 = expression_model(y)
_, logits_age, logits_gender = age_gender_model(frozen_cnn7=frozen_cnn7)
# Plot A/D/V values
plot_expression(logits_expression[0, 0].item(), # implicit detach().cpu().numpy()
logits_expression[0, 1].item(),
logits_expression[0, 2].item())
expression_file = "expression.png"
plt.savefig(expression_file)
return (
f"{round(100 * logits_age[0, 0].item())} years", # age
{
"female": logits_gender[0, 0].item(),
"male": logits_gender[0, 1].item(),
"child": logits_gender[0, 2].item(),
},
expression_file,
)
@spaces.GPU
def recognize(input_file: str) -> typing.Tuple[str, dict, str]:
# sampling_rate, signal = input_microphone
# signal = signal.astype(np.float32, order="C") / 32768.0
if input_file is None:
raise gr.Error(
"No audio file submitted! "
"Please upload or record an audio file "
"before submitting your request."
)
signal, sampling_rate = audiofile.read(input_file, duration=duration)
# Resample to sampling rate supported byu the models
target_rate = 16000
signal = audresample.resample(signal, sampling_rate, target_rate)
return process_func(signal, target_rate)
def plot_expression_RIGID(arousal, dominance, valence):
r"""3D pixel plot of arousal, dominance, valence."""
# Voxels per dimension
voxels = 7
# Create voxel grid
x, y, z = np.indices((voxels + 1, voxels + 1, voxels + 1))
voxel = (
(x == round(arousal * voxels))
& (y == round(dominance * voxels))
& (z == round(valence * voxels))
)
projection = (
(x == round(arousal * voxels))
& (y == round(dominance * voxels))
& (z < round(valence * voxels))
)
colors = np.empty((voxel | projection).shape, dtype=object)
colors[voxel] = "#fcb06c"
colors[projection] = "#fed7a9"
ax = plt.figure().add_subplot(projection='3d')
ax.voxels(voxel | projection, facecolors=colors, edgecolor='k')
ax.set_xlim([0, voxels])
ax.set_ylim([0, voxels])
ax.set_zlim([0, voxels])
ax.set_aspect("equal")
ax.set_xlabel("arousal", fontsize="large", labelpad=0)
ax.set_ylabel("dominance", fontsize="large", labelpad=0)
ax.set_zlabel("valence", fontsize="large", labelpad=0)
ax.set_xticks(
list(range(voxels + 1)),
labels=[0, None, None, None, None, None, None, 1],
verticalalignment="bottom",
)
ax.set_yticks(
list(range(voxels + 1)),
labels=[0, None, None, None, None, None, None, 1],
verticalalignment="bottom",
)
ax.set_zticks(
list(range(voxels + 1)),
labels=[0, None, None, None, None, None, None, 1],
verticalalignment="top",
)
def explode(data):
"""
Expands a 3D array by creating gaps between voxels.
This function is used to create the visual separation between the voxels.
"""
shape_orig = np.array(data.shape)
shape_new = shape_orig * 2 - 1
retval = np.zeros(shape_new, dtype=data.dtype)
retval[::2, ::2, ::2] = data
return retval
def plot_expression(arousal, dominance, valence):
'''_h = cuda tensor (N_PIX, N_PIX, N_PIX)'''
N_PIX = 5
_h = np.random.rand(N_PIX, N_PIX, N_PIX) * 1e-3
adv = np.array([arousal, .994 - dominance, valence]).clip(0, .99)
arousal, dominance, valence = (adv * N_PIX).astype(np.int64) # find voxel
_h[arousal, dominance, valence] = .22
filled = np.ones((N_PIX, N_PIX, N_PIX), dtype=bool)
# upscale the above voxel image, leaving gaps
filled_2 = explode(filled)
# Shrink the gaps
x, y, z = np.indices(np.array(filled_2.shape) + 1).astype(float) // 2
x[1::2, :, :] += 1
y[:, 1::2, :] += 1
z[:, :, 1::2] += 1
ax = plt.figure().add_subplot(projection='3d')
f_2 = np.ones([2 * N_PIX - 1,
2 * N_PIX - 1,
2 * N_PIX - 1, 4], dtype=np.float64)
f_2[:, :, :, 3] = explode(_h)
cm = plt.get_cmap('cool')
f_2[:, :, :, :3] = cm(f_2[:, :, :, 3])[..., :3]
f_2[:, :, :, 3] = f_2[:, :, :, 3].clip(.01, .74)
print(f_2.shape, 'f_2 AAAA')
ecolors_2 = f_2
ax.voxels(x, y, z, filled_2, facecolors=f_2, edgecolors=.006 * ecolors_2)
ax.set_aspect('equal')
ax.set_zticks([0, N_PIX])
ax.set_xticks([0, N_PIX])
ax.set_yticks([0, N_PIX])
ax.set_zticklabels([f'{n/N_PIX:.2f}'[0:] for n in ax.get_zticks()])
ax.set_zlabel('valence', fontsize=10, labelpad=0)
ax.set_xticklabels([f'{n/N_PIX:.2f}' for n in ax.get_xticks()])
ax.set_xlabel('arousal', fontsize=10, labelpad=7)
# The y-axis rotation is corrected here from 275 to 90 degrees
ax.set_yticklabels([f'{1-n/N_PIX:.2f}' for n in ax.get_yticks()], rotation=90)
ax.set_ylabel('dominance', fontsize=10, labelpad=10)
ax.grid(False)
ax.plot([N_PIX, N_PIX], [0, N_PIX + .2], [N_PIX, N_PIX], 'g', linewidth=1)
ax.plot([0, N_PIX], [N_PIX, N_PIX + .24], [N_PIX, N_PIX], 'k', linewidth=1)
# Missing lines on the top face
ax.plot([0, 0], [0, N_PIX], [N_PIX, N_PIX], 'darkred', linewidth=1)
ax.plot([0, N_PIX], [0, 0], [N_PIX, N_PIX], 'darkblue', linewidth=1)
# Set pane colors after plotting the lines
# UPDATED: Replaced `w_xaxis` with `xaxis` and `w_yaxis` with `yaxis`.
ax.xaxis.set_pane_color((0.8, 0.8, 0.8, 0.5))
ax.yaxis.set_pane_color((0.8, 0.8, 0.8, 0.5))
ax.zaxis.set_pane_color((0.8, 0.8, 0.8, 0.0))
# Restore the limits to prevent the plot from expanding
ax.set_xlim(0, N_PIX)
ax.set_ylim(0, N_PIX)
ax.set_zlim(0, N_PIX)
#plt.show()
# ------
description = (
"Estimate **age**, **gender**, and **expression** "
"of the speaker contained in an audio file or microphone recording. \n"
f"The model [{age_gender_model_name}]"
f"(https://huggingface.co/{age_gender_model_name}) "
"recognises age and gender, "
f"whereas [{expression_model_name}]"
f"(https://huggingface.co/{expression_model_name}) "
"recognises the expression dimensions arousal, dominance, and valence. "
)
with gr.Blocks() as demo:
with gr.Tab(label="Speech analysis"):
with gr.Row():
with gr.Column():
gr.Markdown(description)
input = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Audio input",
min_length=0.025, # seconds
)
gr.Examples(
[
"female-46-neutral.wav",
"female-20-happy.wav",
"male-60-angry.wav",
"male-27-sad.wav",
],
[input],
label="Examples from CREMA-D, ODbL v1.0 license",
)
gr.Markdown("Only the first two seconds of the audio will be processed.")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_age = gr.Textbox(label="Age")
output_gender = gr.Label(label="Gender")
output_expression = gr.Image(label="Expression")
outputs = [output_age, output_gender, output_expression]
submit_btn.click(recognize, input, outputs)
demo.launch(debug=True)
|