Dionyssos's picture
fusion
fb65e18
raw
history blame
11.3 kB
import typing
import types # fusion of forward() of Wav2Vec2
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import spaces
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel
import audiofile
import audresample
device = 0 if torch.cuda.is_available() else "cpu"
duration = 2 # limit processing of audio
age_gender_model_name = "audeering/wav2vec2-large-robust-24-ft-age-gender"
expression_model_name = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim"
class AgeGenderHead(nn.Module):
r"""Age-gender model head."""
def __init__(self, config, num_labels):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class AgeGenderModel(Wav2Vec2PreTrainedModel):
r"""Age-gender recognition model."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.age = AgeGenderHead(config, 1)
self.gender = AgeGenderHead(config, 3)
self.init_weights()
def forward(
self,
frozen_cnn7,
):
hidden_states = self.wav2vec2(frozen_cnn7=frozen_cnn7) # runs only Transformer layers
hidden_states = torch.mean(hidden_states, dim=1)
logits_age = self.age(hidden_states)
logits_gender = torch.softmax(self.gender(hidden_states), dim=1)
return hidden_states, logits_age, logits_gender
# == Fusion = Define Age Wav2Vec2Model's forward to accept already computed CNN7 features from Emotion
def _forward(
self,
extract_features,
attention_mask=None):
# extract_features : CNN7 fetures of wav2vec2 as they are calc. from CNN7 feature extractor
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(
extract_features.shape[1], attention_mask, add_adapter=False
)
hidden_states, extract_features = self.feature_projection(extract_features)
hidden_states = self._mask_hidden_states(
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if self.adapter is not None:
raise ValueError
hidden_states = self.adapter(hidden_states)
return hidden_states
# ===============================================
# ================== Foward & CNN features
def _forward_and_cnn7(
self,
input_values,
attention_mask=None
):
frozen_cnn7 = self.feature_extractor(input_values)
frozen_cnn7 = frozen_cnn7.transpose(1, 2)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(
frozen_cnn7.shape[1], attention_mask, add_adapter=False
)
hidden_states, extract_features = self.feature_projection(frozen_cnn7) # grad=True non frozen
hidden_states = self._mask_hidden_states(
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if self.adapter is not None:
raise ValueError
hidden_states = self.adapter(hidden_states)
return hidden_states, frozen_cnn7 # feature_projection is trainable thus we are unable to use the projected hidden states from official wav2vev2.forward
# =============================
class ExpressionHead(nn.Module):
r"""Expression model head."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class ExpressionModel(Wav2Vec2PreTrainedModel):
r"""speech expression model."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.classifier = ExpressionHead(config)
self.init_weights()
def forward(self, input_values):
hidden_states, frozen_cnn7 = self.wav2vec2(input_values)
hidden_states = torch.mean(hidden_states, dim=1)
logits = self.classifier(hidden_states)
return hidden_states, logits, frozen_cnn7
# Load models from hub
age_gender_processor = Wav2Vec2Processor.from_pretrained(age_gender_model_name)
age_gender_model = AgeGenderModel.from_pretrained(age_gender_model_name)
expression_processor = Wav2Vec2Processor.from_pretrained(expression_model_name)
expression_model = ExpressionModel.from_pretrained(expression_model_name)
# Emotion Calc. CNN features
age_gender_model.wav2vec2.forward = types.MethodType(_forward, age_gender_model)
expression_model.wav2vec2.forward = types.MethodType(_forward_and_cnn7, expression_model)
def process_func(x: np.ndarray, sampling_rate: int) -> typing.Tuple[str, dict, str]:
# batch audio
y = expression_processor(x, sampling_rate=sampling_rate)
y = y['input_values'][0]
y = y.reshape(1, -1)
y = torch.from_numpy(y).to(device)
# run through expression model
with torch.no_grad():
_, logits_expression, frozen_cnn7 = expression_model(y)
_, logits_age, logits_gender = age_gender_model(frozen_cnn7=frozen_cnn7)
# Plot A/D/V values
plot_expression(logits_expression[0, 0].item(), # implicit detach().cpu().numpy()
logits_expression[0, 1].item(),
logits_expression[0, 2].item())
expression_file = "expression.png"
plt.savefig(expression_file)
return (
f"{round(100 * logits_age[0, 0].item())} years", # age
{
"female": logits_gender[0, 0].item(),
"male": logits_gender[0, 1].item(),
"child": logits_gender[0, 2].item(),
},
expression_file,
)
@spaces.GPU
def recognize(input_file: str) -> typing.Tuple[str, dict, str]:
# sampling_rate, signal = input_microphone
# signal = signal.astype(np.float32, order="C") / 32768.0
if input_file is None:
raise gr.Error(
"No audio file submitted! "
"Please upload or record an audio file "
"before submitting your request."
)
signal, sampling_rate = audiofile.read(input_file, duration=duration)
# Resample to sampling rate supported byu the models
target_rate = 16000
signal = audresample.resample(signal, sampling_rate, target_rate)
return process_func(signal, target_rate)
def plot_expression(arousal, dominance, valence):
r"""3D pixel plot of arousal, dominance, valence."""
# Voxels per dimension
voxels = 7
# Create voxel grid
x, y, z = np.indices((voxels + 1, voxels + 1, voxels + 1))
voxel = (
(x == round(arousal * voxels))
& (y == round(dominance * voxels))
& (z == round(valence * voxels))
)
projection = (
(x == round(arousal * voxels))
& (y == round(dominance * voxels))
& (z < round(valence * voxels))
)
colors = np.empty((voxel | projection).shape, dtype=object)
colors[voxel] = "#fcb06c"
colors[projection] = "#fed7a9"
ax = plt.figure().add_subplot(projection='3d')
ax.voxels(voxel | projection, facecolors=colors, edgecolor='k')
ax.set_xlim([0, voxels])
ax.set_ylim([0, voxels])
ax.set_zlim([0, voxels])
ax.set_aspect("equal")
ax.set_xlabel("arousal", fontsize="large", labelpad=0)
ax.set_ylabel("dominance", fontsize="large", labelpad=0)
ax.set_zlabel("valence", fontsize="large", labelpad=0)
ax.set_xticks(
list(range(voxels + 1)),
labels=[0, None, None, None, None, None, None, 1],
verticalalignment="bottom",
)
ax.set_yticks(
list(range(voxels + 1)),
labels=[0, None, None, None, None, None, None, 1],
verticalalignment="bottom",
)
ax.set_zticks(
list(range(voxels + 1)),
labels=[0, None, None, None, None, None, None, 1],
verticalalignment="top",
)
description = (
"Estimate **age**, **gender**, and **expression** "
"of the speaker contained in an audio file or microphone recording. \n"
f"The model [{age_gender_model_name}]"
f"(https://huggingface.co/{age_gender_model_name}) "
"recognises age and gender, "
f"whereas [{expression_model_name}]"
f"(https://huggingface.co/{expression_model_name}) "
"recognises the expression dimensions arousal, dominance, and valence. "
)
with gr.Blocks() as demo:
with gr.Tab(label="Speech analysis"):
with gr.Row():
with gr.Column():
gr.Markdown(description)
input = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Audio input",
min_length=0.025, # seconds
)
gr.Examples(
[
"female-46-neutral.wav",
"female-20-happy.wav",
"male-60-angry.wav",
"male-27-sad.wav",
],
[input],
label="Examples from CREMA-D, ODbL v1.0 license",
)
gr.Markdown("Only the first two seconds of the audio will be processed.")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_age = gr.Textbox(label="Age")
output_gender = gr.Label(label="Gender")
output_expression = gr.Image(label="Expression")
outputs = [output_age, output_gender, output_expression]
submit_btn.click(recognize, input, outputs)
demo.launch(debug=True)