Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
import pandas as pd | |
from pycaret.regression import load_model, predict_model | |
from fastapi import FastAPI | |
import uvicorn | |
from pydantic import create_model | |
# Create the app | |
app = FastAPI() | |
# Load trained Pipeline | |
model = load_model("lr_api") | |
# Create input/output pydantic models | |
input_model = create_model("lr_api_input", **{'rownames': 1030, 'year': 1994, 'violent': 304.5, 'murder': 2.9000000953674316, 'prisoners': 152, 'afam': 1.769081950187683, 'cauc': 70.66014862060547, 'male': 18.20832061767578, 'population': 1.9304360151290894, 'income': 12036.8603515625, 'density': 0.023493800312280655, 'state': 'Utah', 'law': 'yes'}) | |
output_model = create_model("lr_api_output", prediction=63.6) | |
# Define predict function | |
def predict(data: input_model): | |
data = pd.DataFrame([data.dict()]) | |
predictions = predict_model(model, data=data) | |
return {"prediction": predictions["prediction_label"].iloc[0]} | |
#if __name__ == "__main__": | |
# uvicorn.run(app, host="127.0.0.1", port=8000) | |