Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
import pandas as pd | |
from pycaret.regression import load_model, predict_model | |
from fastapi import FastAPI | |
from pydantic import BaseModel | |
import uvicorn | |
# Create the app | |
app = FastAPI() | |
# Load trained Pipeline | |
model = load_model("lr_api") | |
# Create input/output pydantic models | |
class InputModel(BaseModel): | |
rownames: int | |
year: int | |
violent: float | |
murder: float | |
prisoners: int | |
afam: float | |
cauc: float | |
male: float | |
population: float | |
income: float | |
density: float | |
state: str | |
law: str | |
class OutputModel(BaseModel): | |
prediction: float | |
# Define predict function | |
def predict(data: InputModel): | |
data = pd.DataFrame([data.dict()]) | |
predictions = predict_model(model, data=data) | |
return {"prediction": predictions["prediction_label"].iloc[0]} | |
#if __name__ == "__main__": | |
# uvicorn.run(app, host="127.0.0.1", port=8000) | |