File size: 1,240 Bytes
f4d4c21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import logging
import sys
import gradio as gr
import asyncio
import nest_asyncio

logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))

from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
from llama_index.llms import HuggingFaceLLM
from langchain.embeddings import HuggingFaceEmbeddings
from g4f import Provider, models
from langchain.llms.base import LLM
from llama_index.llms import LangChainLLM
from langchain_g4f import G4FLLM

nest_asyncio.apply()

documents = SimpleDirectoryReader('data').load_data()

embed_model = HuggingFaceEmbeddings(
    model_name="sentence-transformers/all-mpnet-base-v2"
)

async def main(query):
    llm: LLM = G4FLLM(
        model=models.gpt_35_turbo,
        provider=Provider.DeepAi,
    )

    llm = LangChainLLM(llm=llm)

    service_context = ServiceContext.from_defaults(chunk_size=512, llm=llm, embed_model=embed_model)

    index = VectorStoreIndex.from_documents(documents, service_context=service_context)

    query_engine = index.as_query_engine()
    response = query_engine.query(query)
    return response

iface = gr.Interface(fn=main, inputs="text", outputs="text")
iface.launch()