File size: 1,247 Bytes
2e130ee 999e17e 2e130ee 81e6cb6 2e130ee 999e17e 0fdca50 2e130ee 0fdca50 2e130ee 3e52453 2e130ee 5fb1a93 2e130ee 0fdca50 3e52453 999e17e 3e52453 2e130ee 3e52453 2e130ee 7f66f23 999e17e 2e130ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import logging
import sys
import gradio as gr
import asyncio
import nest_asyncio
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
from llama_index.llms import HuggingFaceLLM
from langchain.embeddings import HuggingFaceEmbeddings
from g4f import Provider, models
from langchain.llms.base import LLM
from llama_index.llms import LangChainLLM
from langchain_g4f import G4FLLM
nest_asyncio.apply()
documents = SimpleDirectoryReader('data').load_data()
embed_model = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2"
)
llm= LLM = G4FLLM(
model=models.gpt_35_turbo,
provider=Provider.Acytoo,
)
llm = LangChainLLM(llm=llm)
service_context = ServiceContext.from_defaults(chunk_size=512, llm=llm, embed_model=embed_model)
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
async def main(query):
query_engine = index.as_query_engine()
response = query_engine.query(query)
print(response)
return response
iface = gr.Interface(fn=main, inputs="text", outputs="text")
iface.launch()
|