sidiqadi's picture
initial commit
e5cfbd4
raw
history blame
5.85 kB
from PIL import Image
import gradio as gr
import cv2
from ultralytics import ASSETS, YOLO
import tempfile
import numpy as np
import time
def load_model(model_name):
"""Loads the specified YOLO model for either segmentation or detection."""
if model_name == "yolov9c-seg":
model_path = "yolov9c-seg.pt"
elif model_name == "yolov9e-seg":
model_path = "yolov9e-seg.pt"
elif model_name == "yolov9c":
model_path = "yolov9c.pt"
elif model_name == "yolov9e":
model_path = "yolov9e.pt"
else:
raise ValueError(f"Invalid model name: {model_name}")
return YOLO(model_path)
def predict_image(img, conf_threshold, iou_threshold, task="detection", model_name=None):
"""Predicts and plots results in an image using YOLO model with adjustable confidence and IOU thresholds."""
if task == "segmentation":
if not model_name:
model_name = "yolov9c-seg"
elif model_name not in ["yolov9c-seg", "yolov9e-seg"]:
raise ValueError(f"Invalid model name for segmentation: {model_name}")
elif task == "detection":
if not model_name:
model_name = "yolov9c"
elif model_name not in ["yolov9c", "yolov9e"]:
raise ValueError(f"Invalid model name for detection: {model_name}")
else:
raise ValueError(f"Invalid task: {task}. Choose either 'segmentation' or 'detection'.")
model = load_model(model_name)
results = model.predict(
source=img,
conf=conf_threshold,
iou=iou_threshold,
show_labels=True,
show_conf=True,
imgsz=640,
)
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
return im
def predict_image_with_task(img, conf_threshold, iou_threshold, task, model_name):
return predict_image(img, conf_threshold, iou_threshold, task, model_name)
image_iface = gr.Interface(
fn=predict_image_with_task,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
gr.Dropdown(choices=["detection", "segmentation"], value="detection", label="Task"),
gr.Dropdown(choices=["yolov9c", "yolov9e", "yolov9c-seg", "yolov9e-seg"], value="yolov9c", label="Model"),
],
outputs=gr.Image(type="pil", label="Result"),
title="X509",
description="Upload images for inference. Choose task and corresponding model.",
examples=[
["cars.jpg", 0.25, 0.45, "detection", "yolov9c"],
],
)
def predict_video(video_path, conf_threshold, iou_threshold, task="detection", model_name=None):
"""Predicts and processes video frames using YOLO model with adjustable confidence and IOU thresholds."""
if task == "segmentation":
if not model_name:
model_name = "yolov9c-seg"
elif model_name not in ["yolov9c-seg", "yolov9e-seg"]:
raise ValueError(f"Invalid model name for segmentation: {model_name}")
elif task == "detection":
if not model_name:
model_name = "yolov9c"
elif model_name not in ["yolov9c", "yolov9e"]:
raise ValueError(f"Invalid model name for detection: {model_name}")
else:
raise ValueError(f"Invalid task: {task}. Choose either 'segmentation' or 'detection'.")
model = load_model(model_name)
cap = cv2.VideoCapture(video_path)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
temp_video_path = tempfile.mktemp(suffix=".mp4")
out = cv2.VideoWriter(temp_video_path, fourcc, fps, (width, height))
frame_count = 0
start_time = time.time()
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
elapsed_time = time.time() - start_time
current_fps = frame_count / elapsed_time
pil_img = Image.fromarray(frame[..., ::-1])
results = model.predict(
source=pil_img,
conf=conf_threshold,
iou=iou_threshold,
show_labels=True,
show_conf=True,
imgsz=640,
)
for r in results:
im_array = r.plot()
processed_frame = Image.fromarray(im_array[..., ::-1])
frame = cv2.cvtColor(np.array(processed_frame), cv2.COLOR_RGB2BGR)
cv2.putText(frame, f"FPS: {current_fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
out.write(frame)
cap.release()
out.release()
return temp_video_path
def predict_video_with_task(video_path, conf_threshold, iou_threshold, task, model_name):
return predict_video(video_path, conf_threshold, iou_threshold, task, model_name)
video_iface = gr.Interface(
fn=predict_video_with_task,
inputs=[
gr.Video(label="Upload Video", interactive=True),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
gr.Dropdown(choices=["detection", "segmentation"], value="detection", label="Task"),
gr.Dropdown(choices=["yolov9c", "yolov9e", "yolov9c-seg", "yolov9e-seg"], value="yolov9c", label="Model"),
],
outputs=gr.File(label="Result"),
title="X509",
description="Upload video for inference. Choose task and corresponding model.",
examples=[
["VID_20240517112011.mp4", 0.25, 0.45, "detection", "yolov9c"],
]
)
production = gr.TabbedInterface([image_iface, video_iface], ["Image Inference", "Video Inference"])
if __name__ == '__main__':
production.launch()