|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
n_gpu_layers = 40 |
|
n_batch = 256 |
|
|
|
import paperscraper |
|
from paperqa import Docs |
|
from langchain.llms import LlamaCpp |
|
from langchain import PromptTemplate, LLMChain |
|
from langchain.callbacks.manager import CallbackManager |
|
from langchain.embeddings import LlamaCppEmbeddings |
|
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler |
|
from g4f import Provider, models |
|
from langchain.llms.base import LLM |
|
|
|
from langchain_g4f import G4FLLM |
|
|
|
|
|
llm = LLM = G4FLLM( |
|
model=models.gpt_35_turbo, |
|
provider=Provider.Aichat, |
|
) |
|
|
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
|
|
model_name = "sentence-transformers/all-mpnet-base-v2" |
|
model_kwargs = {'device': 'cpu'} |
|
encode_kwargs = {'normalize_embeddings': False} |
|
embeddings = HuggingFaceEmbeddings( |
|
model_name=model_name, |
|
model_kwargs=model_kwargs, |
|
encode_kwargs=encode_kwargs |
|
) |
|
docs = Docs(llm=llm, embeddings=embeddings) |
|
|
|
keyword_search = 'bispecific antibody manufacture' |
|
papers = paperscraper.search_papers(keyword_search, limit=2) |
|
for path,data in papers.items(): |
|
try: |
|
docs.add(path,chunk_chars=500) |
|
except ValueError as e: |
|
print('Could not read', path, e) |
|
|
|
answer = docs.query("What manufacturing challenges are unique to bispecific antibodies?") |
|
print(answer) |
|
|
|
def re(r): |
|
|
|
print(answer) |
|
return r |
|
|
|
gr.Interface(fn=re,inputs=gr.Textbox(),outputs=gr.Textbox).launch() |