File size: 6,140 Bytes
d239a7a ec6037b d239a7a ec6037b d239a7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import numpy as np
import cv2
class yolox():
def __init__(self, model, p6=False, confThreshold=0.5, nmsThreshold=0.5, objThreshold=0.5):
with open('coco.names', 'rt') as f:
self.class_names = f.read().rstrip('\n').split('\n')
self.net = cv2.dnn.readNet(model)
self.input_size = (640, 640)
self.mean = (0.485, 0.456, 0.406)
self.std = (0.229, 0.224, 0.225)
if not p6:
self.strides = [8, 16, 32]
else:
self.strides = [8, 16, 32, 64]
self.confThreshold = confThreshold
self.nmsThreshold = nmsThreshold
self.objThreshold = objThreshold
def preprocess(self, image):
if len(image.shape) == 3:
padded_img = np.ones((self.input_size[0], self.input_size[1], 3)) * 114.0
else:
padded_img = np.ones(self.input_size) * 114.0
img = np.array(image)
r = min(self.input_size[0] / img.shape[0], self.input_size[1] / img.shape[1])
resized_img = cv2.resize(
img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LINEAR
).astype(np.float32)
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
image = padded_img
image = image.astype(np.float32)
image = image[:, :, ::-1]
image /= 255.0
image -= self.mean
image /= self.std
return image, r
def demo_postprocess(self, outputs):
grids = []
expanded_strides = []
hsizes = [self.input_size[0] // stride for stride in self.strides]
wsizes = [self.input_size[1] // stride for stride in self.strides]
for hsize, wsize, stride in zip(hsizes, wsizes, self.strides):
xv, yv = np.meshgrid(np.arange(hsize), np.arange(wsize))
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
grids.append(grid)
shape = grid.shape[:2]
expanded_strides.append(np.full((*shape, 1), stride))
grids = np.concatenate(grids, 1)
expanded_strides = np.concatenate(expanded_strides, 1)
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
return outputs
def nms(self, boxes, scores):
"""Single class NMS implemented in Numpy."""
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= self.nmsThreshold)[0]
order = order[inds + 1]
return keep
def multiclass_nms(self, boxes, scores):
"""Multiclass NMS implemented in Numpy"""
final_dets = []
num_classes = scores.shape[1]
for cls_ind in range(num_classes):
cls_scores = scores[:, cls_ind]
valid_score_mask = cls_scores > self.confThreshold
if valid_score_mask.sum() == 0:
continue
else:
valid_scores = cls_scores[valid_score_mask]
valid_boxes = boxes[valid_score_mask]
keep = self.nms(valid_boxes, valid_scores)
if len(keep) > 0:
cls_inds = np.ones((len(keep), 1)) * cls_ind
dets = np.concatenate([valid_boxes[keep], valid_scores[keep, None], cls_inds], 1)
final_dets.append(dets)
if len(final_dets) == 0:
return None
return np.concatenate(final_dets, 0)
def vis(self, img, boxes, scores, cls_ids):
detected_classes = []
for i in range(len(boxes)):
box = boxes[i]
cls_id = int(cls_ids[i])
score = scores[i]
if score < self.confThreshold:
continue
x0 = int(box[0])
y0 = int(box[1])
x1 = int(box[2])
y1 = int(box[3])
class_name = self.class_names[cls_id]
detected_classes.append(class_name)
text = '{}:{:.1f}%'.format(class_name, score * 100)
font = cv2.FONT_HERSHEY_SIMPLEX
txt_size = cv2.getTextSize(text, font, 0.4, 1)[0]
cv2.rectangle(img, (x0, y0), (x1, y1), (0, 0, 255), 2)
cv2.rectangle(img, (x0, y0 + 1), (x0 + txt_size[0] + 1, y0 + int(1.5 * txt_size[1])), (255, 255, 255), -1)
cv2.putText(img, text, (x0, y0 + txt_size[1]), font, 0.4, (0, 0, 0), thickness=1)
return img, detected_classes
def detect(self, srcimg):
detected_classes = []
img, ratio = self.preprocess(srcimg)
blob = cv2.dnn.blobFromImage(img)
self.net.setInput(blob)
outs = self.net.forward(self.net.getUnconnectedOutLayersNames())
predictions = self.demo_postprocess(outs[0])[0]
boxes = predictions[:, :4]
scores = predictions[:, 4:5] * predictions[:, 5:]
boxes_xyxy = np.ones_like(boxes)
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
boxes_xyxy /= ratio
dets = self.multiclass_nms(boxes_xyxy, scores)
if dets is not None:
final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
srcimg, detected_classes = self.vis(srcimg, final_boxes, final_scores, final_cls_inds)
return srcimg, ", ".join(list(set(detected_classes))) if len(detected_classes) > 0 else ""
|