|
import streamlit as st |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
saved_model = "Donlapark/finetuned_yelp" |
|
tokenizer = AutoTokenizer.from_pretrained("Donlapark/finetuned_yelp") |
|
model = AutoModelForSequenceClassification.from_pretrained("Donlapark/finetuned_yelp") |
|
def main(): |
|
st.title("Yelp review") |
|
|
|
with st.form("text_field"): |
|
text = st.text_area('enter some text:') |
|
|
|
clicked = st.form_submit_button("Submit") |
|
if clicked: |
|
sentence = tokenizer(text, return_tensors="pt") |
|
results = torch.softmax(model(**sentence).logits, axis=1).numpy()[0] |
|
st.write(f"Predicted review: {results.argmax()}, Score: {results.max()}") |
|
|
|
if __name__ == "__main__": |
|
main() |