File size: 12,961 Bytes
ad723a4
10e9b7d
 
3c4371f
ad723a4
4ae9830
 
ae1e596
 
078d44a
eca2559
078d44a
ad723a4
 
 
 
 
 
 
 
 
 
 
 
e80aab9
3db6293
e80aab9
ad723a4
 
 
 
 
 
2d0d963
4ae9830
 
2d0d963
4ae9830
2d0d963
ad723a4
4ae9830
 
 
ad723a4
 
 
 
 
 
4ae9830
ad723a4
 
4ae9830
 
ad723a4
 
4ae9830
 
 
 
 
 
6e0603f
ad723a4
 
31243f4
ad723a4
 
 
 
 
 
 
d3b4a4f
ad723a4
d3b4a4f
ad723a4
5156a15
ad723a4
 
 
 
 
 
 
 
 
 
afbd7d6
ad723a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afbd7d6
ad723a4
 
 
 
 
 
 
f70d92b
bcfec53
ad723a4
0319333
ad723a4
5d01286
31243f4
ad723a4
5d01286
ad723a4
 
 
 
5d01286
ad723a4
449efb7
5d01286
4021bf3
ad723a4
 
31243f4
ad723a4
31243f4
 
ad723a4
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
31243f4
ad723a4
 
31243f4
3c4371f
31243f4
ad723a4
36ed51a
c1fd3d2
3c4371f
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
ad723a4
 
31243f4
7d65c66
31243f4
 
e80aab9
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
ad723a4
 
31243f4
 
3c4371f
31243f4
 
7d65c66
3c4371f
31243f4
e80aab9
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
7d65c66
31243f4
 
ad723a4
31243f4
 
e80aab9
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
e80aab9
 
7e4a06b
31243f4
9088b99
7d65c66
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
 
ad723a4
7d65c66
3c4371f
 
7d65c66
3c4371f
7d65c66
 
ad723a4
7d65c66
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# app.py (New LangChain version)
import os
import gradio as gr
import pandas as pd
from bs4 import BeautifulSoup
import datetime
import pytz
import math
import re
import requests
import traceback
import sys

# --- LangChain and new Transformers imports ---
from langchain.agents import AgentExecutor, create_react_agent
from langchain_huggingface import HuggingFacePipeline
from langchain_core.prompts import PromptTemplate
from langchain.tools import Tool
from langchain_community.tools import DuckDuckGoSearchRun

# --- Other imports ---
import transformers # Still useful for version checking
print(f"--- Using transformers version: {transformers.__version__} ---")

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"


# --- Tool Definitions (LangChain Style) ---
# For LangChain, we define the functions and then wrap them in LangChain's Tool class.

def get_current_time_in_timezone_func(timezone: str) -> str:
    """A tool that fetches the current local time in a specified IANA timezone. Always use this tool for questions about the current time. Input should be a valid timezone string (e.g., 'America/New_York', 'Europe/London')."""
    print(f"--- Tool: Executing get_current_time_in_timezone for: {timezone} ---")
    try:
        tz = pytz.timezone(timezone)
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S %Z%z")
        return f"The current local time in {timezone} is: {local_time}"
    except pytz.exceptions.UnknownTimeZoneError:
        return f"Error: Unknown timezone '{timezone}'. Please use a valid IANA timezone name."
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"

# Using the DuckDuckGoSearchRun tool from LangChain for stability
# The description is very important for the agent to know when to use it.
search_tool = DuckDuckGoSearchRun(
    name="web_search",
    description="A tool that performs a web search using DuckDuckGo. Use this to find up-to-date information about events, facts, or topics when the answer isn't already known."
)

def safe_calculator_func(expression: str) -> str:
    """A tool for evaluating simple mathematical expressions. Use this tool *only* for calculations involving numbers, +, -, *, /, %, parentheses, and the math functions: sqrt, pow. Do not use it to run other code."""
    print(f"--- Tool: Executing safe_calculator with expression: {expression} ---")
    try:
        # Using a more restricted eval context for safety
        allowed_names = {"sqrt": math.sqrt, "pow": math.pow, "pi": math.pi}
        result = eval(expression, {"__builtins__": {}}, allowed_names)
        return str(result)
    except Exception as e:
        print(f"Error during calculation for '{expression}': {e}")
        return f"Error calculating '{expression}': Invalid expression or calculation error ({e})."


# --- LangChain Agent Definition ---
class LangChainAgentWrapper:
    def __init__(self):
        print("Initializing LangChainAgentWrapper...")
        
        # Using a newer, more capable instruction-tuned model.
        # This model is generally better at following the ReAct prompt format used by LangChain agents.
        model_id = "mistralai/Mistral-7B-Instruct-v0.1" 
        # model_id = "bigcode/starcoderbase-1b" # You can still use starcoder if you prefer
        
        try:
            hf_auth_token = os.getenv("HF_TOKEN")
            if not hf_auth_token:
                raise ValueError("HF_TOKEN secret is missing. It is required for downloading models.")
            else:
                print("HF_TOKEN secret found.")

            # Create the Hugging Face pipeline
            print(f"Loading model pipeline for: {model_id}")
            llm_pipeline = transformers.pipeline(
                "text-generation",
                model=model_id,
                model_kwargs={"torch_dtype": "auto"}, # Use "auto" for dtype
                device_map="auto", # Requires accelerate
                token=hf_auth_token,
            )
            print("Model pipeline loaded successfully.")
            
            # Wrap the pipeline in a LangChain LLM object
            self.llm = HuggingFacePipeline(pipeline=llm_pipeline)

            # Define the list of LangChain tools
            self.tools = [
                Tool(
                    name="get_current_time_in_timezone",
                    func=get_current_time_in_timezone_func,
                    description=get_current_time_in_timezone_func.__doc__
                ),
                search_tool, # This is already a LangChain Tool instance
                Tool(
                    name="safe_calculator",
                    func=safe_calculator_func,
                    description=safe_calculator_func.__doc__
                ),
            ]
            print(f"Tools prepared for agent: {[tool.name for tool in self.tools]}")
            
            # Create the ReAct agent prompt from a template
            # The prompt is crucial for teaching the agent how to think and use tools.
            react_prompt = PromptTemplate.from_template(
                """
                You are a helpful assistant. Answer the following questions as best you can.
                You have access to the following tools:

                {tools}

                Use the following format:

                Question: the input question you must answer
                Thought: you should always think about what to do
                Action: the action to take, should be one of [{tool_names}]
                Action Input: the input to the action
                Observation: the result of the action
                ... (this Thought/Action/Action Input/Observation can repeat N times)
                Thought: I now know the final answer
                Final Answer: the final answer to the original input question

                Begin!

                Question: {input}
                Thought:{agent_scratchpad}
                """
            )
            
            # Create the agent
            agent = create_react_agent(self.llm, self.tools, react_prompt)
            
            # Create the agent executor, which runs the agent loop
            self.agent_executor = AgentExecutor(agent=agent, tools=self.tools, verbose=True, handle_parsing_errors=True)
            print("LangChain agent created successfully.")

        except Exception as e:
            print(f"CRITICAL ERROR: Failed to initialize LangChain agent: {e}")
            traceback.print_exc() 
            raise RuntimeError(f"LangChain agent initialization failed: {e}") from e

    def __call__(self, question: str) -> str:
        print(f"\n--- LangChainAgentWrapper received question: {question[:100]}... ---")
        try:
            # Invoke the agent executor
            response = self.agent_executor.invoke({"input": question})
            # The answer is in the 'output' key of the response dictionary
            return response.get("output", "No output found.")
        except Exception as e:
            print(f"ERROR: LangChain agent execution failed: {e}")
            traceback.print_exc()
            return f"Agent Error: Failed to process the question. Details: {e}"

# --- Main Evaluation Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the agent on them, submits all answers,
    and displays the results.
    """
    space_id = os.getenv("SPACE_ID")

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        # Now instantiate our new LangChain agent
        agent = LangChainAgentWrapper()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        traceback.print_exc()
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        """
    )

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)