Spaces:
Sleeping
Sleeping
File size: 12,961 Bytes
ad723a4 10e9b7d 3c4371f ad723a4 4ae9830 ae1e596 078d44a eca2559 078d44a ad723a4 e80aab9 3db6293 e80aab9 ad723a4 2d0d963 4ae9830 2d0d963 4ae9830 2d0d963 ad723a4 4ae9830 ad723a4 4ae9830 ad723a4 4ae9830 ad723a4 4ae9830 6e0603f ad723a4 31243f4 ad723a4 d3b4a4f ad723a4 d3b4a4f ad723a4 5156a15 ad723a4 afbd7d6 ad723a4 afbd7d6 ad723a4 f70d92b bcfec53 ad723a4 0319333 ad723a4 5d01286 31243f4 ad723a4 5d01286 ad723a4 5d01286 ad723a4 449efb7 5d01286 4021bf3 ad723a4 31243f4 ad723a4 31243f4 ad723a4 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 31243f4 ad723a4 31243f4 3c4371f 31243f4 ad723a4 36ed51a c1fd3d2 3c4371f 31243f4 eccf8e4 31243f4 7d65c66 31243f4 ad723a4 31243f4 7d65c66 31243f4 e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 ad723a4 31243f4 3c4371f 31243f4 7d65c66 3c4371f 31243f4 e80aab9 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 7d65c66 31243f4 ad723a4 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b 31243f4 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f ad723a4 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 ad723a4 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# app.py (New LangChain version)
import os
import gradio as gr
import pandas as pd
from bs4 import BeautifulSoup
import datetime
import pytz
import math
import re
import requests
import traceback
import sys
# --- LangChain and new Transformers imports ---
from langchain.agents import AgentExecutor, create_react_agent
from langchain_huggingface import HuggingFacePipeline
from langchain_core.prompts import PromptTemplate
from langchain.tools import Tool
from langchain_community.tools import DuckDuckGoSearchRun
# --- Other imports ---
import transformers # Still useful for version checking
print(f"--- Using transformers version: {transformers.__version__} ---")
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Tool Definitions (LangChain Style) ---
# For LangChain, we define the functions and then wrap them in LangChain's Tool class.
def get_current_time_in_timezone_func(timezone: str) -> str:
"""A tool that fetches the current local time in a specified IANA timezone. Always use this tool for questions about the current time. Input should be a valid timezone string (e.g., 'America/New_York', 'Europe/London')."""
print(f"--- Tool: Executing get_current_time_in_timezone for: {timezone} ---")
try:
tz = pytz.timezone(timezone)
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S %Z%z")
return f"The current local time in {timezone} is: {local_time}"
except pytz.exceptions.UnknownTimeZoneError:
return f"Error: Unknown timezone '{timezone}'. Please use a valid IANA timezone name."
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
# Using the DuckDuckGoSearchRun tool from LangChain for stability
# The description is very important for the agent to know when to use it.
search_tool = DuckDuckGoSearchRun(
name="web_search",
description="A tool that performs a web search using DuckDuckGo. Use this to find up-to-date information about events, facts, or topics when the answer isn't already known."
)
def safe_calculator_func(expression: str) -> str:
"""A tool for evaluating simple mathematical expressions. Use this tool *only* for calculations involving numbers, +, -, *, /, %, parentheses, and the math functions: sqrt, pow. Do not use it to run other code."""
print(f"--- Tool: Executing safe_calculator with expression: {expression} ---")
try:
# Using a more restricted eval context for safety
allowed_names = {"sqrt": math.sqrt, "pow": math.pow, "pi": math.pi}
result = eval(expression, {"__builtins__": {}}, allowed_names)
return str(result)
except Exception as e:
print(f"Error during calculation for '{expression}': {e}")
return f"Error calculating '{expression}': Invalid expression or calculation error ({e})."
# --- LangChain Agent Definition ---
class LangChainAgentWrapper:
def __init__(self):
print("Initializing LangChainAgentWrapper...")
# Using a newer, more capable instruction-tuned model.
# This model is generally better at following the ReAct prompt format used by LangChain agents.
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
# model_id = "bigcode/starcoderbase-1b" # You can still use starcoder if you prefer
try:
hf_auth_token = os.getenv("HF_TOKEN")
if not hf_auth_token:
raise ValueError("HF_TOKEN secret is missing. It is required for downloading models.")
else:
print("HF_TOKEN secret found.")
# Create the Hugging Face pipeline
print(f"Loading model pipeline for: {model_id}")
llm_pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": "auto"}, # Use "auto" for dtype
device_map="auto", # Requires accelerate
token=hf_auth_token,
)
print("Model pipeline loaded successfully.")
# Wrap the pipeline in a LangChain LLM object
self.llm = HuggingFacePipeline(pipeline=llm_pipeline)
# Define the list of LangChain tools
self.tools = [
Tool(
name="get_current_time_in_timezone",
func=get_current_time_in_timezone_func,
description=get_current_time_in_timezone_func.__doc__
),
search_tool, # This is already a LangChain Tool instance
Tool(
name="safe_calculator",
func=safe_calculator_func,
description=safe_calculator_func.__doc__
),
]
print(f"Tools prepared for agent: {[tool.name for tool in self.tools]}")
# Create the ReAct agent prompt from a template
# The prompt is crucial for teaching the agent how to think and use tools.
react_prompt = PromptTemplate.from_template(
"""
You are a helpful assistant. Answer the following questions as best you can.
You have access to the following tools:
{tools}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin!
Question: {input}
Thought:{agent_scratchpad}
"""
)
# Create the agent
agent = create_react_agent(self.llm, self.tools, react_prompt)
# Create the agent executor, which runs the agent loop
self.agent_executor = AgentExecutor(agent=agent, tools=self.tools, verbose=True, handle_parsing_errors=True)
print("LangChain agent created successfully.")
except Exception as e:
print(f"CRITICAL ERROR: Failed to initialize LangChain agent: {e}")
traceback.print_exc()
raise RuntimeError(f"LangChain agent initialization failed: {e}") from e
def __call__(self, question: str) -> str:
print(f"\n--- LangChainAgentWrapper received question: {question[:100]}... ---")
try:
# Invoke the agent executor
response = self.agent_executor.invoke({"input": question})
# The answer is in the 'output' key of the response dictionary
return response.get("output", "No output found.")
except Exception as e:
print(f"ERROR: LangChain agent execution failed: {e}")
traceback.print_exc()
return f"Agent Error: Failed to process the question. Details: {e}"
# --- Main Evaluation Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the agent on them, submits all answers,
and displays the results.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
# Now instantiate our new LangChain agent
agent = LangChainAgentWrapper()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
traceback.print_exc()
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |