Spaces:
Runtime error
Runtime error
import os | |
import re | |
from pathlib import Path | |
import numpy as np | |
import torch | |
from PIL import Image, ImageOps | |
import comfy.utils | |
from .utils.image_convert import pil2tensor | |
_CATEGORY = 'fnodes/files' | |
class ReadImage: | |
def INPUT_TYPES(cls): | |
return { | |
'required': { | |
'image_path': ('STRING', {'default': 'images'}), | |
} | |
} | |
RETURN_TYPES = ('IMAGE', 'STRING') | |
RETURN_NAMES = ('image', 'file_stem') | |
FUNCTION = 'execute' | |
CATEGORY = _CATEGORY | |
DESCRIPTION = '读取指定路径图片,返回图片和图片名称' | |
def execute(self, image_path): | |
# 去掉可能存在的双引号 | |
image_path = image_path.strip('"') | |
if not os.path.exists(image_path): | |
raise FileNotFoundError(f'文件未找到: {image_path}') | |
file_stem = str(Path(image_path).stem) | |
img = Image.open(image_path) | |
img = ImageOps.exif_transpose(img) | |
if img is None: | |
raise ValueError(f'无法从文件中读取有效图像: {image_path}') | |
if img.mode == 'I': | |
img = img.point(lambda i: i * (1 / 255)) | |
img = img.convert('RGB') | |
image = np.array(img).astype(np.float32) / 255.0 | |
image = torch.from_numpy(image)[None,] | |
return (image, file_stem) | |
class LoadImagesFromFolder: | |
def INPUT_TYPES(cls): | |
return { | |
'required': { | |
'input_path': ('STRING', {'default': '', 'multiline': False}), | |
'start_index': ('INT', {'default': 0, 'min': 0, 'max': 9999}), | |
'max_index': ('INT', {'default': 1, 'min': 1, 'max': 9999}), | |
} | |
} | |
RETURN_TYPES = ( | |
'IMAGE', | |
'IMAGE', | |
) | |
RETURN_NAMES = ( | |
'images_list', | |
'image_batch', | |
) | |
OUTPUT_IS_LIST = ( | |
True, | |
False, | |
) | |
FUNCTION = 'make_list' | |
CATEGORY = _CATEGORY | |
DESCRIPTION = '读取文件夹中的图片,返回图片列表和图片批次' | |
def make_list(self, start_index, max_index, input_path): | |
# 检查输入路径是否存在 | |
if not os.path.exists(input_path): | |
raise FileNotFoundError(f'文件夹未找到: {input_path}') | |
# 检查文件夹是否为空 | |
if not os.listdir(input_path): | |
raise ValueError(f'文件夹为空: {input_path}') | |
# 对文件列表进行排序 | |
file_list = sorted( | |
os.listdir(input_path), | |
key=lambda s: sum(((s, int(n)) for s, n in re.findall(r'(\D+)(\d+)', 'a%s0' % s)), ()), | |
) | |
image_list = [] | |
# 确保 start_index 在列表范围内 | |
start_index = max(0, min(start_index, len(file_list) - 1)) | |
# 计算结束索引 | |
end_index = min(start_index + max_index, len(file_list)) | |
ref_image = None | |
for num in range(start_index, end_index): | |
fname = os.path.join(input_path, file_list[num]) | |
img = Image.open(fname) | |
img = ImageOps.exif_transpose(img) | |
if img is None: | |
raise ValueError(f'无法从文件中读取有效图像: {fname}') | |
image = img.convert('RGB') | |
t_image = pil2tensor(image) | |
# 确保所有图像的尺寸相同 | |
if ref_image is None: | |
ref_image = t_image | |
else: | |
if t_image.shape[1:] != ref_image.shape[1:]: | |
t_image = comfy.utils.common_upscale( | |
t_image.movedim(-1, 1), | |
ref_image.shape[2], | |
ref_image.shape[1], | |
'lanczos', | |
'center', | |
).movedim(1, -1) | |
image_list.append(t_image) | |
if not image_list: | |
raise ValueError('未找到有效图像') | |
image_batch = torch.cat(image_list, dim=0) | |
images_out = [image_batch[i : i + 1, ...] for i in range(image_batch.shape[0])] | |
return ( | |
images_out, | |
image_batch, | |
) | |
class FilePathAnalyzer: | |
def INPUT_TYPES(cls): | |
return { | |
'required': { | |
'file_path': ('STRING', {'default': 'file.txt'}), | |
} | |
} | |
RETURN_TYPES = ('STRING', 'STRING', 'STRING', 'STRING') | |
RETURN_NAMES = ('parent_dir', 'file_stem', 'file_extension', 'full_path') | |
FUNCTION = 'execute' | |
CATEGORY = _CATEGORY | |
DESCRIPTION = '从文件路径中提取上层目录、文件名(不含扩展名)、扩展名和完整路径' | |
def execute(self, file_path): | |
# 去掉可能存在的双引号 | |
file_path = file_path.strip('"') | |
path = Path(file_path) | |
parent_dir = str(path.parent) | |
file_stem = path.stem | |
file_extension = path.suffix | |
full_path = str(path.absolute()) | |
return (parent_dir, file_stem, file_extension, full_path) | |
class RegexExtractor: | |
def INPUT_TYPES(cls): | |
return { | |
'required': { | |
'input_string': ('STRING', {'default': ''}), | |
'regex_pattern': ('STRING', {'default': ''}), | |
'group_number': ('INT', {'default': 0, 'min': 0, 'max': 100}), | |
} | |
} | |
RETURN_TYPES = ('STRING',) | |
RETURN_NAMES = ('extracted_text',) | |
FUNCTION = 'execute' | |
CATEGORY = _CATEGORY | |
DESCRIPTION = '使用正则表达式从输入字符串中提取文本' | |
def execute(self, input_string, regex_pattern, group_number): | |
try: | |
match = re.search(regex_pattern, input_string) | |
if match: | |
groups = match.groups() | |
if 0 <= group_number <= len(groups): | |
return (match.group(group_number),) | |
else: | |
return ('组号超出范围',) | |
else: | |
return ('未找到匹配',) | |
except re.error: | |
return ('无效的正则表达式',) | |
class SelectFace: | |
dir_dict = {} | |
def __init__(self): | |
pass | |
def INPUT_TYPES(cls): | |
target_dir = r'D:\aidraw\fworker\assets\face_pieces' | |
for d in Path(target_dir).iterdir(): | |
if d.is_dir(): | |
cls.dir_dict[d.name] = d | |
return {'required': {'face_name': (list(cls.dir_dict.keys()),)}} | |
RETURN_TYPES = ( | |
'STRING', | |
'STRING', | |
) | |
RETURN_NAMES = ( | |
'face_path', | |
'face_name', | |
) | |
FUNCTION = 'execute' | |
CATEGORY = _CATEGORY | |
DESCRIPTION = '选择人脸' | |
def execute(self, face_name): | |
return ( | |
str(self.dir_dict[face_name]), | |
face_name, | |
) | |
FILE_CLASS_MAPPINGS = { | |
'ReadImage-': ReadImage, | |
'LoadImagesFromFolder-': LoadImagesFromFolder, | |
'FilePathAnalyzer-': FilePathAnalyzer, | |
'RegexExtractor-': RegexExtractor, | |
'SelectFace-': SelectFace, | |
} | |
FILE_NAME_MAPPINGS = { | |
'ReadImage-': 'Read Image from Path', | |
'LoadImagesFromFolder-': 'Load Images From Folder', | |
'FilePathAnalyzer-': 'FilePath Analyzer', | |
'RegexExtractor-': 'Regex Extractor', | |
'SelectFace-': 'Select Face', | |
} | |