Dreamspire's picture
custom_nodes
f2dbf59
"""
author: Chris Freilich
description: This extension provides a blend modes node with 30 blend modes.
"""
from PIL import Image
import numpy as np
import torch
import torch.nn.functional as F
from colorsys import rgb_to_hsv
from blend_modes import difference, normal, screen, soft_light, lighten_only, dodge, \
addition, darken_only, multiply, hard_light, \
grain_extract, grain_merge, divide, overlay
def dissolve(backdrop, source, opacity):
# Normalize the RGB and alpha values to 0-1
backdrop_norm = backdrop[:, :, :3] / 255
source_norm = source[:, :, :3] / 255
source_alpha_norm = source[:, :, 3] / 255
# Calculate the transparency of each pixel in the source image
transparency = opacity * source_alpha_norm
# Generate a random matrix with the same shape as the source image
random_matrix = np.random.random(source.shape[:2])
# Create a mask where the random values are less than the transparency
mask = random_matrix < transparency
# Use the mask to select pixels from the source or backdrop
blend = np.where(mask[..., None], source_norm, backdrop_norm)
# Apply the alpha channel of the source image to the blended image
new_rgb = (1 - source_alpha_norm[..., None]) * backdrop_norm + source_alpha_norm[..., None] * blend
# Ensure the RGB values are within the valid range
new_rgb = np.clip(new_rgb, 0, 1)
# Convert the RGB values back to 0-255
new_rgb = new_rgb * 255
# Calculate the new alpha value by taking the maximum of the backdrop and source alpha channels
new_alpha = np.maximum(backdrop[:, :, 3], source[:, :, 3])
# Create a new RGBA image with the calculated RGB and alpha values
result = np.dstack((new_rgb, new_alpha))
return result
def rgb_to_hsv_via_torch(rgb_numpy: np.ndarray, device=None) -> torch.Tensor:
"""
Convert an RGB image to HSV.
:param rgb: A tensor of shape (3, H, W) where the three channels correspond to R, G, B.
The values should be in the range [0, 1].
:return: A tensor of shape (3, H, W) where the three channels correspond to H, S, V.
The hue (H) will be in the range [0, 1], while S and V will be in the range [0, 1].
"""
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
rgb = torch.from_numpy(rgb_numpy).float().permute(2, 0, 1).to(device)
r, g, b = rgb[0], rgb[1], rgb[2]
max_val, _ = torch.max(rgb, dim=0)
min_val, _ = torch.min(rgb, dim=0)
delta = max_val - min_val
h = torch.zeros_like(max_val)
s = torch.zeros_like(max_val)
v = max_val
# calc hue... avoid div by zero (by masking the delta)
mask = delta != 0
r_eq_max = (r == max_val) & mask
g_eq_max = (g == max_val) & mask
b_eq_max = (b == max_val) & mask
h[r_eq_max] = (g[r_eq_max] - b[r_eq_max]) / delta[r_eq_max] % 6
h[g_eq_max] = (b[g_eq_max] - r[g_eq_max]) / delta[g_eq_max] + 2.0
h[b_eq_max] = (r[b_eq_max] - g[b_eq_max]) / delta[b_eq_max] + 4.0
h = (h / 6.0) % 1.0
# calc saturation
s[max_val != 0] = delta[max_val != 0] / max_val[max_val != 0]
hsv = torch.stack([h, s, v], dim=0)
hsv_numpy = hsv.permute(1, 2, 0).cpu().numpy()
return hsv_numpy
def hsv_to_rgb_via_torch(hsv_numpy: np.ndarray, device=None) -> torch.Tensor:
"""
Convert an HSV image to RGB.
:param hsv: A tensor of shape (3, H, W) where the three channels correspond to H, S, V.
The H channel values should be in the range [0, 1], while S and V will be in the range [0, 1].
:return: A tensor of shape (3, H, W) where the three channels correspond to R, G, B.
The RGB values will be in the range [0, 1].
"""
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
hsv = torch.from_numpy(hsv_numpy).float().permute(2, 0, 1).to(device)
h, s, v = hsv[0], hsv[1], hsv[2]
c = v * s # chroma
x = c * (1 - torch.abs((h * 6) % 2 - 1))
m = v - c # match value
z = torch.zeros_like(h)
rgb = torch.zeros_like(hsv)
# define conditions for different hue ranges
h_cond = [
(h < 1/6, torch.stack([c, x, z], dim=0)),
((1/6 <= h) & (h < 2/6), torch.stack([x, c, z], dim=0)),
((2/6 <= h) & (h < 3/6), torch.stack([z, c, x], dim=0)),
((3/6 <= h) & (h < 4/6), torch.stack([z, x, c], dim=0)),
((4/6 <= h) & (h < 5/6), torch.stack([x, z, c], dim=0)),
(h >= 5/6, torch.stack([c, z, x], dim=0)),
]
# conditionally set RGB values based on the hue range
for cond, result in h_cond:
rgb[:, cond] = result[:, cond]
# add match value to convert to final RGB values
rgb = rgb + m
rgb_numpy = rgb.permute(1, 2, 0).cpu().numpy()
return rgb_numpy
def hsv(backdrop, source, opacity, channel):
# Convert RGBA to RGB, normalized
backdrop_rgb = backdrop[:, :, :3] / 255.0
source_rgb = source[:, :, :3] / 255.0
source_alpha = source[:, :, 3] / 255.0
# Convert RGB to HSV
backdrop_hsv = rgb_to_hsv_via_torch(backdrop_rgb)
source_hsv = rgb_to_hsv_via_torch(source_rgb)
# Combine HSV values
new_hsv = backdrop_hsv.copy()
# Determine which channel to operate on
if channel == "saturation":
new_hsv[:, :, 1] = (1 - opacity * source_alpha) * backdrop_hsv[:, :, 1] + opacity * source_alpha * source_hsv[:, :, 1]
elif channel == "luminance":
new_hsv[:, :, 2] = (1 - opacity * source_alpha) * backdrop_hsv[:, :, 2] + opacity * source_alpha * source_hsv[:, :, 2]
elif channel == "hue":
new_hsv[:, :, 0] = (1 - opacity * source_alpha) * backdrop_hsv[:, :, 0] + opacity * source_alpha * source_hsv[:, :, 0]
elif channel == "color":
new_hsv[:, :, :2] = (1 - opacity * source_alpha[..., None]) * backdrop_hsv[:, :, :2] + opacity * source_alpha[..., None] * source_hsv[:, :, :2]
# Convert HSV back to RGB
new_rgb = hsv_to_rgb_via_torch(new_hsv)
# Apply the alpha channel of the source image to the new RGB image
new_rgb = (1 - source_alpha[..., None]) * backdrop_rgb + source_alpha[..., None] * new_rgb
# Ensure the RGB values are within the valid range
new_rgb = np.clip(new_rgb, 0, 1)
# Convert RGB back to RGBA and scale to 0-255 range
new_rgba = np.dstack((new_rgb * 255, backdrop[:, :, 3]))
return new_rgba.astype(np.uint8)
def saturation(backdrop, source, opacity):
return hsv(backdrop, source, opacity, "saturation")
def luminance(backdrop, source, opacity):
return hsv(backdrop, source, opacity, "luminance")
def hue(backdrop, source, opacity):
return hsv(backdrop, source, opacity, "hue")
def color(backdrop, source, opacity):
return hsv(backdrop, source, opacity, "color")
def darker_lighter_color(backdrop, source, opacity, type):
# Normalize the RGB and alpha values to 0-1
backdrop_norm = backdrop[:, :, :3] / 255
source_norm = source[:, :, :3] / 255
source_alpha_norm = source[:, :, 3] / 255
# Convert RGB to HSV
backdrop_hsv = np.array([rgb_to_hsv(*rgb) for row in backdrop_norm for rgb in row]).reshape(backdrop.shape[:2] + (3,))
source_hsv = np.array([rgb_to_hsv(*rgb) for row in source_norm for rgb in row]).reshape(source.shape[:2] + (3,))
# Create a mask where the value (brightness) of the source image is less than the value of the backdrop image
if type == "dark":
mask = source_hsv[:, :, 2] < backdrop_hsv[:, :, 2]
else:
mask = source_hsv[:, :, 2] > backdrop_hsv[:, :, 2]
# Use the mask to select pixels from the source or backdrop
blend = np.where(mask[..., None], source_norm, backdrop_norm)
# Apply the alpha channel of the source image to the blended image
new_rgb = (1 - source_alpha_norm[..., None] * opacity) * backdrop_norm + source_alpha_norm[..., None] * opacity * blend
# Ensure the RGB values are within the valid range
new_rgb = np.clip(new_rgb, 0, 1)
# Convert the RGB values back to 0-255
new_rgb = new_rgb * 255
# Calculate the new alpha value by taking the maximum of the backdrop and source alpha channels
new_alpha = np.maximum(backdrop[:, :, 3], source[:, :, 3])
# Create a new RGBA image with the calculated RGB and alpha values
result = np.dstack((new_rgb, new_alpha))
return result
def darker_color(backdrop, source, opacity):
return darker_lighter_color(backdrop, source, opacity, "dark")
def lighter_color(backdrop, source, opacity):
return darker_lighter_color(backdrop, source, opacity, "light")
def simple_mode(backdrop, source, opacity, mode):
# Normalize the RGB and alpha values to 0-1
backdrop_norm = backdrop[:, :, :3] / 255
source_norm = source[:, :, :3] / 255
source_alpha_norm = source[:, :, 3:4] / 255
# Calculate the blend without any transparency considerations
if mode == "linear_burn":
blend = backdrop_norm + source_norm - 1
elif mode == "linear_light":
blend = backdrop_norm + (2 * source_norm) - 1
elif mode == "color_dodge":
blend = backdrop_norm / (1 - source_norm)
blend = np.clip(blend, 0, 1)
elif mode == "color_burn":
blend = 1 - ((1 - backdrop_norm) / source_norm)
blend = np.clip(blend, 0, 1)
elif mode == "exclusion":
blend = backdrop_norm + source_norm - (2 * backdrop_norm * source_norm)
elif mode == "subtract":
blend = backdrop_norm - source_norm
elif mode == "vivid_light":
blend = np.where(source_norm <= 0.5, backdrop_norm / (1 - 2 * source_norm), 1 - (1 -backdrop_norm) / (2 * source_norm - 0.5) )
blend = np.clip(blend, 0, 1)
elif mode == "pin_light":
blend = np.where(source_norm <= 0.5, np.minimum(backdrop_norm, 2 * source_norm), np.maximum(backdrop_norm, 2 * (source_norm - 0.5)))
elif mode == "hard_mix":
blend = simple_mode(backdrop, source, opacity, "linear_light")
blend = np.round(blend[:, :, :3] / 255)
# Apply the blended layer back onto the backdrop layer while utilizing the alpha channel and opacity information
new_rgb = (1 - source_alpha_norm * opacity) * backdrop_norm + source_alpha_norm * opacity * blend
# Ensure the RGB values are within the valid range
new_rgb = np.clip(new_rgb, 0, 1)
# Convert the RGB values back to 0-255
new_rgb = new_rgb * 255
# Calculate the new alpha value by taking the maximum of the backdrop and source alpha channels
new_alpha = np.maximum(backdrop[:, :, 3], source[:, :, 3])
# Create a new RGBA image with the calculated RGB and alpha values
result = np.dstack((new_rgb, new_alpha))
return result
def linear_light(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "linear_light")
def vivid_light(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "vivid_light")
def pin_light(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "pin_light")
def hard_mix(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "hard_mix")
def linear_burn(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "linear_burn")
def color_dodge(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "color_dodge")
def color_burn(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "color_burn")
def exclusion(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "exclusion")
def subtract(backdrop, source, opacity):
return simple_mode(backdrop, source, opacity, "subtract")
BLEND_MODES = {
"normal": normal,
"dissolve": dissolve,
"darken": darken_only,
"multiply": multiply,
"color burn": color_burn,
"linear burn": linear_burn,
"darker color": darker_color,
"lighten": lighten_only,
"screen": screen,
"color dodge": color_dodge,
"linear dodge(add)": addition,
"lighter color": lighter_color,
"dodge": dodge,
"overlay": overlay,
"soft light": soft_light,
"hard light": hard_light,
"vivid light": vivid_light,
"linear light": linear_light,
"pin light": pin_light,
"hard mix": hard_mix,
"difference": difference,
"exclusion": exclusion,
"subtract": subtract,
"divide": divide,
"hue": hue,
"saturation": saturation,
"color": color,
"luminosity": luminance,
"grain extract": grain_extract,
"grain merge": grain_merge
}