Spaces:
Runtime error
Runtime error
from .imagefunc import * | |
NODE_NAME = 'CheckMaskV2' | |
# 检查mask是否有效,如果mask面积少于指定比例则判为无效mask | |
class CheckMaskV2: | |
def __init__(self): | |
pass | |
def INPUT_TYPES(self): | |
method_list = ['simple', 'detect_percent'] | |
blank_mask_list = ['white', 'black'] | |
return { | |
"required": { | |
"mask": ("MASK",), # | |
"method": (method_list,), # | |
"white_point": ("INT", {"default": 1, "min": 1, "max": 254, "step": 1}), # 用于判断mask是否有效的白点值,高于此值被计入有效 | |
"area_percent": ("FLOAT", {"default": 0.01, "min": 0, "max": 100, "step": 0.01}), # 区域百分比,低于此则mask判定无效 | |
}, | |
"optional": { # | |
} | |
} | |
RETURN_TYPES = ("BOOLEAN",) | |
RETURN_NAMES = ('bool',) | |
FUNCTION = 'check_mask_v2' | |
CATEGORY = '😺dzNodes/LayerUtility' | |
def check_mask_v2(self, mask, method, white_point, area_percent,): | |
if mask.dim() == 2: | |
mask = torch.unsqueeze(mask, 0) | |
tensor_mask = mask[0] | |
print(f"tensor_mask={tensor_mask},shape is {tensor_mask.shape}") | |
pil_mask = tensor2pil(tensor_mask) | |
if pil_mask.width * pil_mask.height > 262144: | |
target_width = 512 | |
target_height = int(target_width * pil_mask.height / pil_mask.width) | |
pil_mask = pil_mask.resize((target_width, target_height), Image.LANCZOS) | |
ret_bool = False | |
if method == 'simple': | |
ret_bool = is_valid_mask(tensor_mask) | |
else: | |
ret_bool = mask_white_area(pil_mask, white_point) * 100 > area_percent | |
return (ret_bool,) | |
NODE_CLASS_MAPPINGS = { | |
"LayerUtility: CheckMaskV2": CheckMaskV2 | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"LayerUtility: CheckMaskV2": "LayerUtility: Check Mask V2" | |
} |