Michael Hu
move to Gradio so we can leverage ZeroGPU
f0248ed
raw
history blame
7.38 kB
"""Main entry point for the Audio Translation Web Application using Gradio
Handles file upload, processing pipeline, and UI rendering
"""
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
import gradio as gr
import os
import time
import numpy as np
import soundfile as sf
from utils.stt import transcribe_audio
from utils.translation import translate_text
from utils.tts import get_tts_engine
# Initialize environment configurations
os.makedirs("temp/uploads", exist_ok=True)
os.makedirs("temp/outputs", exist_ok=True)
# CSS for styling the Gradio interface
css = """
.gradio-container {
max-width: 1200px;
margin: 0 auto;
}
.output-text {
font-family: monospace;
padding: 10px;
background-color: #f5f5f5;
border-radius: 4px;
}
"""
def handle_file_processing(audio_file):
"""
Execute the complete processing pipeline:
1. Speech-to-Text (STT)
2. Machine Translation
3. Text-to-Speech (TTS)
Args:
audio_file: Tuple containing (sample_rate, audio_data)
Returns:
Tuple containing (english_text, chinese_text, output_audio)
"""
logger.info("Starting processing for uploaded audio")
try:
# Save the uploaded audio to a temporary file
sr, audio_data = audio_file
temp_path = os.path.join("temp/uploads", f"upload_{time.time()}.wav")
sf.write(temp_path, audio_data, sr)
logger.info(f"Saved uploaded audio to {temp_path}")
# STT Phase
logger.info("Beginning STT processing")
english_text = transcribe_audio(temp_path)
logger.info(f"STT completed. Text length: {len(english_text)} characters")
# Translation Phase
logger.info("Beginning translation")
chinese_text = translate_text(english_text)
logger.info(f"Translation completed. Translated length: {len(chinese_text)} characters")
# TTS Phase
logger.info("Beginning TTS generation")
# Initialize TTS engine with appropriate language code for Chinese
engine = get_tts_engine(lang_code='z') # 'z' for Mandarin Chinese
# Generate speech and get the file path
output_path = engine.generate_speech(chinese_text, voice="zf_xiaobei")
logger.info(f"TTS completed. Output file: {output_path}")
# Load the generated audio for Gradio output
audio_data, sr = sf.read(output_path)
return english_text, chinese_text, (sr, audio_data)
except Exception as e:
logger.error(f"Processing failed: {str(e)}", exc_info=True)
raise gr.Error(f"Processing Failed: {str(e)}")
def stream_audio(chinese_text, voice, speed):
"""
Stream audio in chunks for the Gradio interface
Args:
chinese_text: The Chinese text to convert to speech
voice: The voice to use
speed: The speech speed factor
Returns:
Generator yielding audio chunks
"""
engine = get_tts_engine(lang_code='z')
# Stream the audio in chunks
for sample_rate, audio_chunk in engine.generate_speech_stream(
chinese_text,
voice=voice,
speed=speed
):
# Create a temporary file for each chunk
temp_chunk_path = f"temp/outputs/chunk_{time.time()}.wav"
sf.write(temp_chunk_path, audio_chunk, sample_rate)
# Load the chunk for Gradio output
chunk_data, sr = sf.read(temp_chunk_path)
# Clean up the temporary chunk file
os.remove(temp_chunk_path)
yield (sr, chunk_data)
def create_interface():
"""
Create and configure the Gradio interface
Returns:
Gradio Blocks interface
"""
with gr.Blocks(css=css) as interface:
gr.Markdown("# 🎧 High-Quality Audio Translation System")
gr.Markdown("Upload English Audio β†’ Get Chinese Speech Output")
with gr.Row():
with gr.Column(scale=2):
# File upload component
audio_input = gr.Audio(
label="Upload English Audio",
type="numpy",
sources=["upload", "microphone"]
)
# Process button
process_btn = gr.Button("Process Audio", variant="primary")
with gr.Column(scale=1):
# TTS Settings
with gr.Box():
gr.Markdown("### TTS Settings")
voice_dropdown = gr.Dropdown(
choices=["Xiaobei (Female)", "Yunjian (Male)"],
value="Xiaobei (Female)",
label="Select Voice"
)
speed_slider = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Speech Speed"
)
# Output section
with gr.Row():
with gr.Column(scale=2):
# Text outputs
english_output = gr.Textbox(
label="Recognition Results",
lines=5,
elem_classes=["output-text"]
)
chinese_output = gr.Textbox(
label="Translation Results",
lines=5,
elem_classes=["output-text"]
)
with gr.Column(scale=1):
# Audio output
audio_output = gr.Audio(
label="Audio Output",
type="numpy"
)
# Stream button
stream_btn = gr.Button("Stream Audio")
# Download button is automatically provided by gr.Audio
# Set up event handlers
process_btn.click(
fn=handle_file_processing,
inputs=[audio_input],
outputs=[english_output, chinese_output, audio_output]
)
# Map voice selection to actual voice IDs
def get_voice_id(voice_name):
voice_map = {
"Xiaobei (Female)": "zf_xiaobei",
"Yunjian (Male)": "zm_yunjian"
}
return voice_map.get(voice_name, "zf_xiaobei")
# Stream button handler
stream_btn.click(
fn=lambda text, voice, speed: stream_audio(text, get_voice_id(voice), speed),
inputs=[chinese_output, voice_dropdown, speed_slider],
outputs=audio_output
)
# Examples
gr.Examples(
examples=[
["examples/sample1.mp3"],
["examples/sample2.wav"]
],
inputs=audio_input
)
return interface
def main():
"""
Main application entry point
"""
logger.info("Starting Gradio application")
interface = create_interface()
interface.launch()
if __name__ == "__main__":
main()