Spaces:
Sleeping
Sleeping
| # Developer Guide | |
| This guide provides comprehensive instructions for extending the Audio Translation System with new providers and contributing to the codebase. | |
| ## Table of Contents | |
| - [Architecture Overview](#architecture-overview) | |
| - [Adding New TTS Providers](#adding-new-tts-providers) | |
| - [Adding New STT Providers](#adding-new-stt-providers) | |
| - [Adding New Translation Providers](#adding-new-translation-providers) | |
| - [Testing Guidelines](#testing-guidelines) | |
| - [Code Style and Standards](#code-style-and-standards) | |
| - [Debugging and Troubleshooting](#debugging-and-troubleshooting) | |
| - [Performance Considerations](#performance-considerations) | |
| ## Architecture Overview | |
| The system follows Domain-Driven Design (DDD) principles with clear separation of concerns: | |
| ``` | |
| src/ | |
| βββ domain/ # Core business logic | |
| β βββ interfaces/ # Service contracts (ports) | |
| β βββ models/ # Domain entities and value objects | |
| β βββ services/ # Domain services | |
| β βββ exceptions.py # Domain-specific exceptions | |
| βββ application/ # Use case orchestration | |
| β βββ services/ # Application services | |
| β βββ dtos/ # Data transfer objects | |
| β βββ error_handling/ # Application error handling | |
| βββ infrastructure/ # External service implementations | |
| β βββ tts/ # TTS provider implementations | |
| β βββ stt/ # STT provider implementations | |
| β βββ translation/ # Translation service implementations | |
| β βββ base/ # Provider base classes | |
| β βββ config/ # Configuration and DI container | |
| βββ presentation/ # UI layer (app.py) | |
| ``` | |
| ### Key Design Patterns | |
| 1. **Provider Pattern**: Pluggable implementations for different services | |
| 2. **Factory Pattern**: Provider creation with fallback logic | |
| 3. **Dependency Injection**: Loose coupling between components | |
| 4. **Repository Pattern**: Data access abstraction | |
| 5. **Strategy Pattern**: Runtime algorithm selection | |
| ## Adding New TTS Providers | |
| ### Step 1: Implement the Provider Class | |
| Create a new provider class that inherits from `TTSProviderBase`: | |
| ```python | |
| # src/infrastructure/tts/my_tts_provider.py | |
| import logging | |
| from typing import Iterator, List | |
| from ..base.tts_provider_base import TTSProviderBase | |
| from ...domain.models.speech_synthesis_request import SpeechSynthesisRequest | |
| from ...domain.exceptions import SpeechSynthesisException | |
| logger = logging.getLogger(__name__) | |
| class MyTTSProvider(TTSProviderBase): | |
| """Custom TTS provider implementation.""" | |
| def __init__(self, api_key: str = None, **kwargs): | |
| """Initialize the TTS provider. | |
| Args: | |
| api_key: Optional API key for cloud-based services | |
| **kwargs: Additional provider-specific configuration | |
| """ | |
| super().__init__( | |
| provider_name="my_tts", | |
| supported_languages=["en", "zh", "es", "fr"] | |
| ) | |
| self.api_key = api_key | |
| self._initialize_provider() | |
| def _initialize_provider(self): | |
| """Initialize provider-specific resources.""" | |
| try: | |
| # Initialize your TTS engine/model here | |
| # Example: self.engine = MyTTSEngine(api_key=self.api_key) | |
| pass | |
| except Exception as e: | |
| logger.error(f"Failed to initialize {self.provider_name}: {e}") | |
| raise SpeechSynthesisException(f"Provider initialization failed: {e}") | |
| def is_available(self) -> bool: | |
| """Check if the provider is available and ready to use.""" | |
| try: | |
| # Check if dependencies are installed | |
| # Check if models are loaded | |
| # Check if API is accessible (for cloud services) | |
| return True # Replace with actual availability check | |
| except Exception: | |
| return False | |
| def get_available_voices(self) -> List[str]: | |
| """Get list of available voices for this provider.""" | |
| # Return actual voice IDs supported by your provider | |
| return ["voice1", "voice2", "voice3"] | |
| def _generate_audio(self, request: SpeechSynthesisRequest) -> tuple[bytes, int]: | |
| """Generate audio data from synthesis request. | |
| Args: | |
| request: The speech synthesis request | |
| Returns: | |
| tuple: (audio_data_bytes, sample_rate) | |
| """ | |
| try: | |
| text = request.text_content.text | |
| voice_id = request.voice_settings.voice_id | |
| speed = request.voice_settings.speed | |
| # Implement your TTS synthesis logic here | |
| # Example: | |
| # audio_data = self.engine.synthesize( | |
| # text=text, | |
| # voice=voice_id, | |
| # speed=speed | |
| # ) | |
| # Return audio data and sample rate | |
| audio_data = b"dummy_audio_data" # Replace with actual synthesis | |
| sample_rate = 22050 # Replace with actual sample rate | |
| return audio_data, sample_rate | |
| except Exception as e: | |
| self._handle_provider_error(e, "audio generation") | |
| def _generate_audio_stream(self, request: SpeechSynthesisRequest) -> Iterator[tuple[bytes, int, bool]]: | |
| """Generate audio data stream from synthesis request. | |
| Args: | |
| request: The speech synthesis request | |
| Yields: | |
| tuple: (audio_data_bytes, sample_rate, is_final) | |
| """ | |
| try: | |
| # Implement streaming synthesis if supported | |
| # For non-streaming providers, you can yield the complete audio as a single chunk | |
| audio_data, sample_rate = self._generate_audio(request) | |
| yield audio_data, sample_rate, True | |
| except Exception as e: | |
| self._handle_provider_error(e, "streaming audio generation") | |
| ``` | |
| ### Step 2: Register the Provider | |
| Add your provider to the factory registration: | |
| ```python | |
| # src/infrastructure/tts/provider_factory.py | |
| def _register_default_providers(self): | |
| """Register all available TTS providers.""" | |
| # ... existing providers ... | |
| # Try to register your custom provider | |
| try: | |
| from .my_tts_provider import MyTTSProvider | |
| self._providers['my_tts'] = MyTTSProvider | |
| logger.info("Registered MyTTS provider") | |
| except ImportError as e: | |
| logger.info(f"MyTTS provider not available: {e}") | |
| ``` | |
| ### Step 3: Add Configuration Support | |
| Update the configuration to include your provider: | |
| ```python | |
| # src/infrastructure/config/app_config.py | |
| class AppConfig: | |
| # ... existing configuration ... | |
| # TTS Provider Configuration | |
| TTS_PROVIDERS = os.getenv('TTS_PROVIDERS', 'kokoro,dia,cosyvoice2,my_tts,dummy').split(',') | |
| # Provider-specific settings | |
| MY_TTS_API_KEY = os.getenv('MY_TTS_API_KEY') | |
| MY_TTS_MODEL = os.getenv('MY_TTS_MODEL', 'default') | |
| ``` | |
| ### Step 4: Add Tests | |
| Create comprehensive tests for your provider: | |
| ```python | |
| # tests/unit/infrastructure/tts/test_my_tts_provider.py | |
| import pytest | |
| from unittest.mock import Mock, patch | |
| from src.infrastructure.tts.my_tts_provider import MyTTSProvider | |
| from src.domain.models.speech_synthesis_request import SpeechSynthesisRequest | |
| from src.domain.models.text_content import TextContent | |
| from src.domain.models.voice_settings import VoiceSettings | |
| from src.domain.exceptions import SpeechSynthesisException | |
| class TestMyTTSProvider: | |
| """Test suite for MyTTS provider.""" | |
| @pytest.fixture | |
| def provider(self): | |
| """Create a test provider instance.""" | |
| return MyTTSProvider(api_key="test_key") | |
| @pytest.fixture | |
| def synthesis_request(self): | |
| """Create a test synthesis request.""" | |
| text_content = TextContent(text="Hello world", language="en") | |
| voice_settings = VoiceSettings(voice_id="voice1", speed=1.0) | |
| return SpeechSynthesisRequest( | |
| text_content=text_content, | |
| voice_settings=voice_settings | |
| ) | |
| def test_provider_initialization(self, provider): | |
| """Test provider initializes correctly.""" | |
| assert provider.provider_name == "my_tts" | |
| assert "en" in provider.supported_languages | |
| assert provider.is_available() | |
| def test_get_available_voices(self, provider): | |
| """Test voice listing.""" | |
| voices = provider.get_available_voices() | |
| assert isinstance(voices, list) | |
| assert len(voices) > 0 | |
| assert "voice1" in voices | |
| def test_synthesize_success(self, provider, synthesis_request): | |
| """Test successful synthesis.""" | |
| with patch.object(provider, '_generate_audio') as mock_generate: | |
| mock_generate.return_value = (b"audio_data", 22050) | |
| result = provider.synthesize(synthesis_request) | |
| assert result.data == b"audio_data" | |
| assert result.format == "wav" | |
| assert result.sample_rate == 22050 | |
| mock_generate.assert_called_once_with(synthesis_request) | |
| def test_synthesize_failure(self, provider, synthesis_request): | |
| """Test synthesis failure handling.""" | |
| with patch.object(provider, '_generate_audio') as mock_generate: | |
| mock_generate.side_effect = Exception("Synthesis failed") | |
| with pytest.raises(SpeechSynthesisException): | |
| provider.synthesize(synthesis_request) | |
| def test_synthesize_stream(self, provider, synthesis_request): | |
| """Test streaming synthesis.""" | |
| chunks = list(provider.synthesize_stream(synthesis_request)) | |
| assert len(chunks) > 0 | |
| assert chunks[-1].is_final # Last chunk should be marked as final | |
| # Verify chunk structure | |
| for chunk in chunks: | |
| assert hasattr(chunk, 'data') | |
| assert hasattr(chunk, 'sample_rate') | |
| assert hasattr(chunk, 'is_final') | |
| ``` | |
| ### Step 5: Add Integration Tests | |
| ```python | |
| # tests/integration/test_my_tts_integration.py | |
| import pytest | |
| from src.infrastructure.config.container_setup import initialize_global_container | |
| from src.infrastructure.tts.provider_factory import TTSProviderFactory | |
| from src.domain.models.speech_synthesis_request import SpeechSynthesisRequest | |
| from src.domain.models.text_content import TextContent | |
| from src.domain.models.voice_settings import VoiceSettings | |
| @pytest.mark.integration | |
| class TestMyTTSIntegration: | |
| """Integration tests for MyTTS provider.""" | |
| def test_provider_factory_integration(self): | |
| """Test provider works with factory.""" | |
| factory = TTSProviderFactory() | |
| if 'my_tts' in factory.get_available_providers(): | |
| provider = factory.create_provider('my_tts') | |
| assert provider.is_available() | |
| assert len(provider.get_available_voices()) > 0 | |
| def test_end_to_end_synthesis(self): | |
| """Test complete synthesis workflow.""" | |
| container = initialize_global_container() | |
| factory = container.resolve(TTSProviderFactory) | |
| if 'my_tts' in factory.get_available_providers(): | |
| provider = factory.create_provider('my_tts') | |
| # Create synthesis request | |
| text_content = TextContent(text="Integration test", language="en") | |
| voice_settings = VoiceSettings(voice_id="voice1", speed=1.0) | |
| request = SpeechSynthesisRequest( | |
| text_content=text_content, | |
| voice_settings=voice_settings | |
| ) | |
| # Synthesize audio | |
| result = provider.synthesize(request) | |
| assert result.data is not None | |
| assert result.duration > 0 | |
| assert result.sample_rate > 0 | |
| ``` | |
| ## Adding New STT Providers | |
| ### Step 1: Implement the Provider Class | |
| ```python | |
| # src/infrastructure/stt/my_stt_provider.py | |
| import logging | |
| from typing import List | |
| from ..base.stt_provider_base import STTProviderBase | |
| from ...domain.models.audio_content import AudioContent | |
| from ...domain.models.text_content import TextContent | |
| from ...domain.exceptions import SpeechRecognitionException | |
| logger = logging.getLogger(__name__) | |
| class MySTTProvider(STTProviderBase): | |
| """Custom STT provider implementation.""" | |
| def __init__(self, model_path: str = None, **kwargs): | |
| """Initialize the STT provider. | |
| Args: | |
| model_path: Path to the STT model | |
| **kwargs: Additional provider-specific configuration | |
| """ | |
| super().__init__( | |
| provider_name="my_stt", | |
| supported_languages=["en", "zh", "es", "fr"], | |
| supported_models=["my_stt_small", "my_stt_large"] | |
| ) | |
| self.model_path = model_path | |
| self._initialize_provider() | |
| def _initialize_provider(self): | |
| """Initialize provider-specific resources.""" | |
| try: | |
| # Initialize your STT engine/model here | |
| # Example: self.model = MySTTModel.load(self.model_path) | |
| pass | |
| except Exception as e: | |
| logger.error(f"Failed to initialize {self.provider_name}: {e}") | |
| raise SpeechRecognitionException(f"Provider initialization failed: {e}") | |
| def is_available(self) -> bool: | |
| """Check if the provider is available.""" | |
| try: | |
| # Check dependencies, model availability, etc. | |
| return True # Replace with actual check | |
| except Exception: | |
| return False | |
| def get_supported_models(self) -> List[str]: | |
| """Get list of supported models.""" | |
| return self.supported_models | |
| def _transcribe_audio(self, audio: AudioContent, model: str) -> tuple[str, float, dict]: | |
| """Transcribe audio using the specified model. | |
| Args: | |
| audio: Audio content to transcribe | |
| model: Model identifier to use | |
| Returns: | |
| tuple: (transcribed_text, confidence_score, metadata) | |
| """ | |
| try: | |
| # Implement your STT logic here | |
| # Example: | |
| # result = self.model.transcribe( | |
| # audio_data=audio.data, | |
| # sample_rate=audio.sample_rate, | |
| # model=model | |
| # ) | |
| # Return transcription results | |
| text = "Transcribed text" # Replace with actual transcription | |
| confidence = 0.95 # Replace with actual confidence | |
| metadata = { | |
| "model_used": model, | |
| "processing_time": 1.5, | |
| "language_detected": "en" | |
| } | |
| return text, confidence, metadata | |
| except Exception as e: | |
| self._handle_provider_error(e, "transcription") | |
| ``` | |
| ### Step 2: Register and Test | |
| Follow similar steps as TTS providers for registration, configuration, and testing. | |
| ## Adding New Translation Providers | |
| ### Step 1: Implement the Provider Class | |
| ```python | |
| # src/infrastructure/translation/my_translation_provider.py | |
| import logging | |
| from typing import List, Dict | |
| from ..base.translation_provider_base import TranslationProviderBase | |
| from ...domain.models.translation_request import TranslationRequest | |
| from ...domain.models.text_content import TextContent | |
| from ...domain.exceptions import TranslationFailedException | |
| logger = logging.getLogger(__name__) | |
| class MyTranslationProvider(TranslationProviderBase): | |
| """Custom translation provider implementation.""" | |
| def __init__(self, api_key: str = None, **kwargs): | |
| """Initialize the translation provider.""" | |
| super().__init__( | |
| provider_name="my_translation", | |
| supported_languages=["en", "zh", "es", "fr", "de", "ja"] | |
| ) | |
| self.api_key = api_key | |
| self._initialize_provider() | |
| def _initialize_provider(self): | |
| """Initialize provider-specific resources.""" | |
| try: | |
| # Initialize your translation engine/model here | |
| pass | |
| except Exception as e: | |
| logger.error(f"Failed to initialize {self.provider_name}: {e}") | |
| raise TranslationFailedException(f"Provider initialization failed: {e}") | |
| def is_available(self) -> bool: | |
| """Check if the provider is available.""" | |
| try: | |
| # Check dependencies, API connectivity, etc. | |
| return True # Replace with actual check | |
| except Exception: | |
| return False | |
| def get_supported_language_pairs(self) -> List[tuple[str, str]]: | |
| """Get supported language pairs.""" | |
| # Return list of (source_lang, target_lang) tuples | |
| pairs = [] | |
| for source in self.supported_languages: | |
| for target in self.supported_languages: | |
| if source != target: | |
| pairs.append((source, target)) | |
| return pairs | |
| def _translate_text(self, request: TranslationRequest) -> tuple[str, float, dict]: | |
| """Translate text using the provider. | |
| Args: | |
| request: Translation request | |
| Returns: | |
| tuple: (translated_text, confidence_score, metadata) | |
| """ | |
| try: | |
| source_text = request.text_content.text | |
| source_lang = request.source_language or request.text_content.language | |
| target_lang = request.target_language | |
| # Implement your translation logic here | |
| # Example: | |
| # result = self.translator.translate( | |
| # text=source_text, | |
| # source_lang=source_lang, | |
| # target_lang=target_lang | |
| # ) | |
| # Return translation results | |
| translated_text = f"Translated: {source_text}" # Replace with actual translation | |
| confidence = 0.92 # Replace with actual confidence | |
| metadata = { | |
| "source_language_detected": source_lang, | |
| "target_language": target_lang, | |
| "processing_time": 0.5, | |
| "model_used": "my_translation_model" | |
| } | |
| return translated_text, confidence, metadata | |
| except Exception as e: | |
| self._handle_provider_error(e, "translation") | |
| ``` | |
| ## Testing Guidelines | |
| ### Unit Testing | |
| - Test each provider in isolation using mocks | |
| - Cover success and failure scenarios | |
| - Test edge cases (empty input, invalid parameters) | |
| - Verify error handling and exception propagation | |
| ### Integration Testing | |
| - Test provider integration with factories | |
| - Test complete pipeline workflows | |
| - Test fallback mechanisms | |
| - Test with real external services (when available) | |
| ### Performance Testing | |
| - Measure processing times for different input sizes | |
| - Test memory usage and resource cleanup | |
| - Test concurrent processing capabilities | |
| - Benchmark against existing providers | |
| ### Test Structure | |
| ``` | |
| tests/ | |
| βββ unit/ | |
| β βββ domain/ | |
| β βββ application/ | |
| β βββ infrastructure/ | |
| β βββ tts/ | |
| β βββ stt/ | |
| β βββ translation/ | |
| βββ integration/ | |
| β βββ test_complete_pipeline.py | |
| β βββ test_provider_fallback.py | |
| β βββ test_error_recovery.py | |
| βββ performance/ | |
| βββ test_processing_speed.py | |
| βββ test_memory_usage.py | |
| βββ test_concurrent_processing.py | |
| ``` | |
| ## Code Style and Standards | |
| ### Python Style Guide | |
| - Follow PEP 8 for code formatting | |
| - Use type hints for all public methods | |
| - Write comprehensive docstrings (Google style) | |
| - Use meaningful variable and function names | |
| - Keep functions focused and small (< 50 lines) | |
| ### Documentation Standards | |
| - Document all public interfaces | |
| - Include usage examples in docstrings | |
| - Explain complex algorithms and business logic | |
| - Keep documentation up-to-date with code changes | |
| ### Error Handling | |
| - Use domain-specific exceptions | |
| - Provide detailed error messages | |
| - Log errors with appropriate levels | |
| - Implement graceful degradation where possible | |
| ### Logging | |
| ```python | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| # Use appropriate log levels | |
| logger.info("Detailed debugging information") | |
| logger.info("General information about program execution") | |
| logger.warning("Something unexpected happened") | |
| logger.error("A serious error occurred") | |
| logger.critical("A very serious error occurred") | |
| ``` | |
| ## Debugging and Troubleshooting | |
| ### Common Issues | |
| 1. **Provider Not Available** | |
| - Check dependencies are installed | |
| - Verify configuration settings | |
| - Check logs for initialization errors | |
| 2. **Poor Quality Output** | |
| - Verify input audio quality | |
| - Check model parameters | |
| - Review provider-specific settings | |
| 3. **Performance Issues** | |
| - Profile code execution | |
| - Check memory usage | |
| - Optimize audio processing pipeline | |
| ### Debugging Tools | |
| - Use Python debugger (pdb) for step-through debugging | |
| - Enable detailed logging for troubleshooting | |
| - Use profiling tools (cProfile, memory_profiler) | |
| - Monitor system resources during processing | |
| ### Logging Configuration | |
| ```python | |
| # Enable debug logging for development | |
| import logging | |
| logging.basicConfig( | |
| level=logging.DEBUG, | |
| format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
| handlers=[ | |
| logging.FileHandler("debug.log"), | |
| logging.StreamHandler() | |
| ] | |
| ) | |
| ``` | |
| ## Performance Considerations | |
| ### Optimization Strategies | |
| 1. **Audio Processing** | |
| - Use appropriate sample rates | |
| - Implement streaming where possible | |
| - Cache processed results | |
| - Optimize memory usage | |
| 2. **Model Loading** | |
| - Load models once and reuse | |
| - Use lazy loading for optional providers | |
| - Implement model caching strategies | |
| 3. **Concurrent Processing** | |
| - Use async/await for I/O operations | |
| - Implement thread-safe providers | |
| - Consider multiprocessing for CPU-intensive tasks | |
| ### Memory Management | |
| - Clean up temporary files | |
| - Release model resources when not needed | |
| - Monitor memory usage in long-running processes | |
| - Implement resource pooling for expensive operations | |
| ### Monitoring and Metrics | |
| - Track processing times | |
| - Monitor error rates | |
| - Measure resource utilization | |
| - Implement health checks | |
| ## Contributing Guidelines | |
| ### Development Workflow | |
| 1. Fork the repository | |
| 2. Create a feature branch | |
| 3. Implement changes with tests | |
| 4. Run the full test suite | |
| 5. Submit a pull request | |
| ### Code Review Process | |
| - All changes require code review | |
| - Tests must pass before merging | |
| - Documentation must be updated | |
| - Performance impact should be assessed | |
| ### Release Process | |
| - Follow semantic versioning | |
| - Update changelog | |
| - Tag releases appropriately | |
| - Deploy to staging before production | |
| --- | |
| For questions or support, please refer to the project documentation or open an issue in the repository. |