teachingAssistant / src /application /services /audio_processing_service.py
Michael Hu
remove all tts providers
6825e46
"""Audio Processing Application Service for pipeline orchestration."""
import logging
import os
import tempfile
import time
import uuid
from pathlib import Path
from typing import Optional, Dict, Any
from contextlib import contextmanager
from ..dtos.audio_upload_dto import AudioUploadDto
from ..dtos.processing_request_dto import ProcessingRequestDto
from ..dtos.processing_result_dto import ProcessingResultDto
from ..error_handling.error_mapper import ErrorMapper
from ..error_handling.structured_logger import StructuredLogger, LogContext, get_structured_logger
from ..error_handling.recovery_manager import RecoveryManager, RetryConfig, CircuitBreakerConfig
from ...domain.interfaces.speech_recognition import ISpeechRecognitionService
from ...domain.interfaces.translation import ITranslationService
from ...domain.interfaces.speech_synthesis import ISpeechSynthesisService
from ...domain.models.audio_content import AudioContent
from ...domain.models.text_content import TextContent
from ...domain.models.translation_request import TranslationRequest
from ...domain.models.speech_synthesis_request import SpeechSynthesisRequest
from ...domain.models.voice_settings import VoiceSettings
from ...domain.exceptions import (
DomainException,
AudioProcessingException,
SpeechRecognitionException,
TranslationFailedException,
SpeechSynthesisException
)
from ...infrastructure.config.app_config import AppConfig
from ...infrastructure.config.dependency_container import DependencyContainer
logger = get_structured_logger(__name__)
class AudioProcessingApplicationService:
"""Application service for orchestrating the complete audio processing pipeline."""
def __init__(
self,
container: DependencyContainer,
config: Optional[AppConfig] = None
):
"""
Initialize the audio processing application service.
Args:
container: Dependency injection container
config: Application configuration (optional, will be resolved from container)
"""
try:
logger.info("Initializing AudioProcessingApplicationService...")
self._container = container
self._config = config or container.resolve(AppConfig)
self._temp_files: Dict[str, str] = {} # Track temporary files for cleanup
# Initialize error handling components
self._error_mapper = ErrorMapper()
self._recovery_manager = RecoveryManager()
# Skip complex logging setup for now to avoid issues
# self._setup_logging()
logger.info("AudioProcessingApplicationService initialized successfully")
except Exception as e:
print(f"Error: Failed to initialize AudioProcessingApplicationService: {e}")
raise
def _setup_logging(self) -> None:
"""Setup logging configuration."""
try:
log_config = self._config.get_logging_config()
# Configure logger level
logger.setLevel(getattr(logging, log_config['level'].upper(), logging.INFO))
# Add file handler if enabled
if log_config.get('enable_file_logging', False):
file_handler = logging.FileHandler(log_config['log_file_path'])
file_handler.setLevel(logger.level)
formatter = logging.Formatter(log_config['format'])
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
except Exception as e:
logger.warning(f"Failed to setup logging configuration: {e}")
def process_audio_pipeline(self, request: ProcessingRequestDto) -> ProcessingResultDto:
"""
Process audio through the complete pipeline: STT -> Translation -> TTS.
Args:
request: Processing request containing audio and parameters
Returns:
ProcessingResultDto: Result of the complete processing pipeline
"""
# Generate correlation ID and start operation logging
correlation_id = logger.log_operation_start(
"audio_processing_pipeline",
extra={
'asr_model': request.asr_model,
'target_language': request.target_language,
'voice': request.voice,
'file_name': request.audio.filename,
'file_size': request.audio.size
}
)
start_time = time.time()
context = LogContext(
correlation_id=correlation_id,
operation="audio_processing_pipeline",
component="AudioProcessingApplicationService"
)
try:
# Validate request
self._validate_request(request)
# Create temporary working directory
with self._create_temp_directory(correlation_id) as temp_dir:
# Step 1: Convert uploaded audio to domain model
audio_content = self._convert_upload_to_audio_content(request.audio, temp_dir)
# Step 2: Speech-to-Text with retry and fallback
original_text = self._perform_speech_recognition_with_recovery(
audio_content,
request.asr_model,
correlation_id
)
# Step 3: Translation (if needed) with retry
translated_text = original_text
if request.requires_translation:
translated_text = self._perform_translation_with_recovery(
original_text,
request.source_language,
request.target_language,
correlation_id
)
# Step 4: Text-to-Speech with fallback providers
output_audio_path = self._perform_speech_synthesis_with_recovery(
translated_text,
request.voice,
request.speed,
request.target_language,
temp_dir,
correlation_id
)
# Calculate processing time
processing_time = time.time() - start_time
# Create successful result
result = ProcessingResultDto.success_result(
original_text=original_text.text,
translated_text=translated_text.text if translated_text != original_text else None,
audio_path=output_audio_path,
processing_time=processing_time,
metadata={
'correlation_id': correlation_id,
'asr_model': request.asr_model,
'target_language': request.target_language,
'voice': request.voice,
'speed': request.speed,
'translation_required': request.requires_translation
}
)
# Log successful completion
logger.log_operation_end(
"audio_processing_pipeline",
correlation_id,
success=True,
duration=processing_time,
context=context,
extra={
'original_text_length': len(original_text.text),
'translated_text_length': len(translated_text.text) if translated_text != original_text else 0,
'output_file': output_audio_path
}
)
return result
except DomainException as e:
processing_time = time.time() - start_time
# Map exception to user-friendly error
error_context = {
'file_name': request.audio.filename,
'file_size': request.audio.size,
'operation': 'audio_processing_pipeline',
'correlation_id': correlation_id
}
error_mapping = self._error_mapper.map_exception(e, error_context)
logger.error(
f"Domain error in audio processing pipeline: {error_mapping.user_message}",
context=context,
exception=e,
extra={
'error_code': error_mapping.error_code,
'error_category': error_mapping.category.value,
'error_severity': error_mapping.severity.value,
'recovery_suggestions': error_mapping.recovery_suggestions
}
)
# Log operation failure
logger.log_operation_end(
"audio_processing_pipeline",
correlation_id,
success=False,
duration=processing_time,
context=context
)
return ProcessingResultDto.error_result(
error_message=error_mapping.user_message,
error_code=error_mapping.error_code,
processing_time=processing_time,
metadata={
'correlation_id': correlation_id,
'error_category': error_mapping.category.value,
'error_severity': error_mapping.severity.value,
'recovery_suggestions': error_mapping.recovery_suggestions,
'technical_details': error_mapping.technical_details
}
)
except Exception as e:
processing_time = time.time() - start_time
# Map unexpected exception
error_context = {
'file_name': request.audio.filename,
'operation': 'audio_processing_pipeline',
'correlation_id': correlation_id
}
error_mapping = self._error_mapper.map_exception(e, error_context)
logger.critical(
f"Unexpected error in audio processing pipeline: {error_mapping.user_message}",
context=context,
exception=e,
extra={
'error_code': error_mapping.error_code,
'error_category': error_mapping.category.value,
'error_severity': error_mapping.severity.value
}
)
# Log operation failure
logger.log_operation_end(
"audio_processing_pipeline",
correlation_id,
success=False,
duration=processing_time,
context=context
)
return ProcessingResultDto.error_result(
error_message=error_mapping.user_message,
error_code=error_mapping.error_code,
processing_time=processing_time,
metadata={
'correlation_id': correlation_id,
'error_category': error_mapping.category.value,
'error_severity': error_mapping.severity.value,
'technical_details': error_mapping.technical_details
}
)
finally:
# Cleanup temporary files
self._cleanup_temp_files()
def _validate_request(self, request: ProcessingRequestDto) -> None:
"""
Validate processing request.
Args:
request: Processing request to validate
Raises:
ValueError: If request is invalid
"""
if not isinstance(request, ProcessingRequestDto):
raise ValueError("Request must be a ProcessingRequestDto instance")
# Additional validation beyond DTO validation
processing_config = self._config.get_processing_config()
# Check file size limits
max_size_bytes = processing_config['max_file_size_mb'] * 1024 * 1024
if request.audio.size > max_size_bytes:
raise ValueError(
f"Audio file too large: {request.audio.size} bytes. "
f"Maximum allowed: {max_size_bytes} bytes"
)
# Check supported audio formats
supported_formats = processing_config['supported_audio_formats']
file_ext = request.audio.file_extension.lstrip('.')
if file_ext not in supported_formats:
raise ValueError(
f"Unsupported audio format: {file_ext}. "
f"Supported formats: {supported_formats}"
)
@contextmanager
def _create_temp_directory(self, correlation_id: str):
"""
Create temporary directory for processing.
Args:
correlation_id: Correlation ID for tracking
Yields:
str: Path to temporary directory
"""
processing_config = self._config.get_processing_config()
base_temp_dir = processing_config['temp_dir']
# Create unique temp directory
temp_dir = os.path.join(base_temp_dir, f"processing_{correlation_id}")
try:
os.makedirs(temp_dir, exist_ok=True)
logger.info(f"Created temporary directory: {temp_dir}")
yield temp_dir
finally:
# Cleanup temp directory if configured
if processing_config.get('cleanup_temp_files', True):
try:
import shutil
shutil.rmtree(temp_dir, ignore_errors=True)
logger.info(f"Cleaned up temporary directory: {temp_dir}")
except Exception as e:
logger.warning(f"Failed to cleanup temp directory {temp_dir}: {e}")
def _convert_upload_to_audio_content(
self,
upload: AudioUploadDto,
temp_dir: str
) -> AudioContent:
"""
Convert uploaded audio to domain AudioContent.
Args:
upload: Audio upload DTO
temp_dir: Temporary directory for file operations
Returns:
AudioContent: Domain audio content model
Raises:
AudioProcessingException: If conversion fails
"""
try:
# Save uploaded content to temporary file
temp_file_path = os.path.join(temp_dir, f"input_{upload.filename}")
with open(temp_file_path, 'wb') as f:
f.write(upload.content)
# Track temp file for cleanup
self._temp_files[temp_file_path] = temp_file_path
# Determine audio format from file extension
audio_format = upload.file_extension.lstrip('.').lower()
# Create AudioContent (simplified - in real implementation would extract metadata)
# For now, set a minimal positive duration to pass validation
# In a real implementation, you would extract actual duration from the audio file
audio_content = AudioContent(
data=upload.content,
format=audio_format,
sample_rate=16000, # Default, would be extracted from actual file
duration=1.0 # Set minimal positive duration to pass validation
)
logger.info(f"Converted upload to AudioContent: {upload.filename}")
return audio_content
except Exception as e:
logger.error(f"Failed to convert upload to AudioContent: {e}")
raise AudioProcessingException(f"Failed to process uploaded audio: {str(e)}")
def _perform_speech_recognition(
self,
audio: AudioContent,
model: str,
correlation_id: str
) -> TextContent:
"""
Perform speech-to-text recognition.
Args:
audio: Audio content to transcribe
model: STT model to use
correlation_id: Correlation ID for tracking
Returns:
TextContent: Transcribed text
Raises:
SpeechRecognitionException: If STT fails
"""
try:
logger.info(f"Starting STT with model: {model} [correlation_id={correlation_id}]")
# Get STT provider from container
stt_provider = self._container.get_stt_provider(model)
# Perform transcription
text_content = stt_provider.transcribe(audio, model)
logger.info(
f"STT completed successfully [correlation_id={correlation_id}, "
f"text_length={len(text_content.text)}]"
)
return text_content
except Exception as e:
logger.error(f"STT failed: {e} [correlation_id={correlation_id}]")
raise SpeechRecognitionException(f"Speech recognition failed: {str(e)}")
def _perform_translation(
self,
text: TextContent,
source_language: Optional[str],
target_language: str,
correlation_id: str
) -> TextContent:
"""
Perform text translation.
Args:
text: Text to translate
source_language: Source language (optional, auto-detect if None)
target_language: Target language
correlation_id: Correlation ID for tracking
Returns:
TextContent: Translated text
Raises:
TranslationFailedException: If translation fails
"""
try:
logger.info(
f"Starting translation: {source_language or 'auto'} -> {target_language} "
f"[correlation_id={correlation_id}]"
)
# Get translation provider from container
translation_provider = self._container.get_translation_provider()
# Create translation request
translation_request = TranslationRequest(
source_text=text, # text is already a TextContent object
target_language=target_language,
source_language=source_language
)
# Perform translation
translated_text = translation_provider.translate(translation_request)
logger.info(
f"Translation completed successfully [correlation_id={correlation_id}, "
f"source_length={len(text.text)}, target_length={len(translated_text.text)}]"
)
return translated_text
except Exception as e:
logger.error(f"Translation failed: {e} [correlation_id={correlation_id}]")
raise TranslationFailedException(f"Translation failed: {str(e)}")
def _perform_speech_synthesis(
self,
text: TextContent,
voice: str,
speed: float,
language: str,
temp_dir: str,
correlation_id: str
) -> str:
"""
Perform text-to-speech synthesis.
Args:
text: Text to synthesize
voice: Voice to use
speed: Speech speed
language: Target language
temp_dir: Temporary directory for output
correlation_id: Correlation ID for tracking
Returns:
str: Path to generated audio file
Raises:
SpeechSynthesisException: If TTS fails
"""
try:
logger.info(
f"Starting TTS with voice: {voice}, speed: {speed}, language: {language} "
f"[correlation_id={correlation_id}]"
)
logger.info(f"Text to synthesize length: {len(text.text)} characters")
# Get TTS provider from container
logger.info(f"Getting TTS provider for voice: {voice}")
tts_provider = self._container.get_tts_provider(voice)
logger.info(f"TTS provider obtained: {tts_provider.__class__.__name__}")
# Create voice settings
logger.info("Creating voice settings")
voice_settings = VoiceSettings(
voice_id=voice,
speed=speed,
language=language
)
logger.info(f"Voice settings created: {voice_settings}")
# Create synthesis request
logger.info("Creating synthesis request")
synthesis_request = SpeechSynthesisRequest(
text_content=text, # text is already a TextContent object
voice_settings=voice_settings
)
logger.info("Synthesis request created successfully")
# Perform synthesis
logger.info("Starting TTS synthesis")
audio_content = tts_provider.synthesize(synthesis_request)
logger.info(f"TTS synthesis completed, audio format: {audio_content.format}, data length: {len(audio_content.data)}")
# Save output to file
output_filename = f"output_{correlation_id}.{audio_content.format}"
output_path = os.path.join(temp_dir, output_filename)
logger.info(f"Saving audio to: {output_path}")
with open(output_path, 'wb') as f:
f.write(audio_content.data)
# Track temp file for cleanup
self._temp_files[output_path] = output_path
logger.info(
f"TTS completed successfully [correlation_id={correlation_id}, "
f"output_file={output_path}]"
)
return output_path
except Exception as e:
logger.error(f"TTS failed: {e} [correlation_id={correlation_id}]", exception=e)
raise SpeechSynthesisException(f"Speech synthesis failed: {str(e)}")
def _get_error_code_from_exception(self, exception: Exception) -> str:
"""
Get error code from exception type.
Args:
exception: Exception instance
Returns:
str: Error code
"""
if isinstance(exception, SpeechRecognitionException):
return 'STT_ERROR'
elif isinstance(exception, TranslationFailedException):
return 'TRANSLATION_ERROR'
elif isinstance(exception, SpeechSynthesisException):
return 'TTS_ERROR'
elif isinstance(exception, ValueError):
return 'VALIDATION_ERROR'
else:
return 'SYSTEM_ERROR'
def _cleanup_temp_files(self) -> None:
"""Cleanup tracked temporary files."""
for file_path in list(self._temp_files.keys()):
try:
if os.path.exists(file_path):
os.remove(file_path)
logger.info(f"Cleaned up temp file: {file_path}")
except Exception as e:
logger.warning(f"Failed to cleanup temp file {file_path}: {e}")
finally:
# Remove from tracking regardless of success
self._temp_files.pop(file_path, None)
def get_processing_status(self, correlation_id: str) -> Dict[str, Any]:
"""
Get processing status for a correlation ID.
Args:
correlation_id: Correlation ID to check
Returns:
Dict[str, Any]: Processing status information
"""
# This would be implemented with actual status tracking
# For now, return basic info
return {
'correlation_id': correlation_id,
'status': 'unknown',
'message': 'Status tracking not implemented'
}
def get_supported_configurations(self) -> Dict[str, Any]:
"""
Get supported configurations for the processing pipeline.
Returns:
Dict[str, Any]: Supported configurations
"""
return {
'asr_models': ['parakeet', 'whisper-small', 'whisper-medium', 'whisper-large'],
'voices': ['chatterbox'],
'languages': [
'en', 'es', 'fr', 'de', 'it', 'pt', 'ru', 'ja', 'ko', 'zh',
'ar', 'hi', 'tr', 'pl', 'nl', 'sv', 'da', 'no', 'fi'
],
'audio_formats': self._config.get_processing_config()['supported_audio_formats'],
'max_file_size_mb': self._config.get_processing_config()['max_file_size_mb'],
'speed_range': {'min': 0.5, 'max': 2.0}
}
def cleanup(self) -> None:
"""Cleanup application service resources."""
logger.info("Cleaning up AudioProcessingApplicationService")
# Cleanup temporary files
self._cleanup_temp_files()
logger.info("AudioProcessingApplicationService cleanup completed")
def __enter__(self):
"""Context manager entry."""
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Context manager exit with cleanup."""
self.cleanup()
def _perform_speech_recognition_with_recovery(
self,
audio: AudioContent,
model: str,
correlation_id: str
) -> TextContent:
"""
Perform speech-to-text recognition with retry and fallback.
Args:
audio: Audio content to transcribe
model: STT model to use
correlation_id: Correlation ID for tracking
Returns:
TextContent: Transcribed text
Raises:
SpeechRecognitionException: If all attempts fail
"""
context = LogContext(
correlation_id=correlation_id,
operation="speech_recognition",
component="AudioProcessingApplicationService"
)
# Configure retry for STT
retry_config = RetryConfig(
max_attempts=2,
base_delay=1.0,
retryable_exceptions=[SpeechRecognitionException, ConnectionError, TimeoutError]
)
def stt_operation(*args, **kwargs):
return self._perform_speech_recognition(audio, model, correlation_id)
try:
# Try with retry
return self._recovery_manager.retry_with_backoff(
stt_operation,
retry_config,
correlation_id
)
except Exception as e:
# Try fallback models if primary fails
stt_config = self._config.get_stt_config()
fallback_models = [m for m in stt_config['preferred_providers'] if m != model]
if fallback_models:
logger.warning(
f"STT model {model} failed, trying fallbacks: {fallback_models}",
context=context,
exception=e
)
fallback_funcs = [
lambda *args, m=fallback_model, **kwargs: self._perform_speech_recognition(audio, m, correlation_id)
for fallback_model in fallback_models
]
return self._recovery_manager.execute_with_fallback(
stt_operation,
fallback_funcs,
correlation_id
)
else:
raise
def _perform_translation_with_recovery(
self,
text: TextContent,
source_language: Optional[str],
target_language: str,
correlation_id: str
) -> TextContent:
"""
Perform text translation with retry.
Args:
text: Text to translate
source_language: Source language (optional, auto-detect if None)
target_language: Target language
correlation_id: Correlation ID for tracking
Returns:
TextContent: Translated text
Raises:
TranslationFailedException: If all attempts fail
"""
# Configure retry for translation
retry_config = RetryConfig(
max_attempts=3,
base_delay=1.0,
exponential_backoff=True,
retryable_exceptions=[TranslationFailedException, ConnectionError, TimeoutError]
)
def translation_operation(*args, **kwargs):
return self._perform_translation(text, source_language, target_language, correlation_id)
return self._recovery_manager.retry_with_backoff(
translation_operation,
retry_config,
correlation_id
)
def _perform_speech_synthesis_with_recovery(
self,
text: TextContent,
voice: str,
speed: float,
language: str,
temp_dir: str,
correlation_id: str
) -> str:
"""
Perform text-to-speech synthesis with fallback providers.
Args:
text: Text to synthesize
voice: Voice to use
speed: Speech speed
language: Target language
temp_dir: Temporary directory for output
correlation_id: Correlation ID for tracking
Returns:
str: Path to generated audio file
Raises:
SpeechSynthesisException: If all providers fail
"""
context = LogContext(
correlation_id=correlation_id,
operation="speech_synthesis",
component="AudioProcessingApplicationService"
)
logger.info(f"Starting TTS synthesis with recovery [correlation_id={correlation_id}]")
logger.info(f"Parameters: voice={voice}, speed={speed}, language={language}")
logger.info(f"Text type: {type(text)}, Text content type: {type(text.text) if hasattr(text, 'text') else 'N/A'}")
def tts_operation(*args, **kwargs):
logger.info(f"Executing TTS operation [correlation_id={correlation_id}]")
try:
result = self._perform_speech_synthesis(text, voice, speed, language, temp_dir, correlation_id)
logger.info(f"TTS operation completed successfully [correlation_id={correlation_id}]")
return result
except Exception as e:
logger.error(f"TTS operation failed: {str(e)} [correlation_id={correlation_id}]")
raise
try:
# Try with circuit breaker protection
logger.info(f"Attempting TTS with circuit breaker [correlation_id={correlation_id}]")
return self._recovery_manager.execute_with_circuit_breaker(
tts_operation,
f"tts_{voice}",
CircuitBreakerConfig(failure_threshold=3, recovery_timeout=30.0),
correlation_id
)
except Exception as e:
logger.error(f"Primary TTS failed, trying fallbacks: {str(e)} [correlation_id={correlation_id}]", context=context, exception=e)
# Try fallback TTS providers
tts_config = self._config.get_tts_config()
fallback_voices = [v for v in tts_config['preferred_providers'] if v != voice]
if fallback_voices:
logger.warning(
f"TTS voice {voice} failed, trying fallbacks: {fallback_voices}",
context=context,
exception=e
)
fallback_funcs = [
lambda *args, v=fallback_voice, **kwargs: self._perform_speech_synthesis(
text, v, speed, language, temp_dir, correlation_id
)
for fallback_voice in fallback_voices
]
return self._recovery_manager.execute_with_fallback(
tts_operation,
fallback_funcs,
correlation_id
)
else:
logger.error(f"No fallback voices available [correlation_id={correlation_id}]")
raise